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A COMMON TRANSVERSE FEEDBACK DAMPER FOR TWO BEAMS DURING A STACKING CYCLE* 

J.M. Wang 
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Sunrmarv 

During the stacking cycle at a proton storage 
ring, it often occurs that coasting and bunched beams 
coexist, rotati.ng in the same direction. The problem 
of the two beams oscillating coherently with each 
other is formulated and discussed. We demonstrate 
that when the tune distribution is dominated by the 
sextupole contribution, one common transverse dipole 
feedback system is enough to damp both the coasting 
beam and the bunched beam instabilities. 

value OP J!J for a given particle is independent of 
time. 

The dipole densities (per unit $1, DC and DB, of 
the coasting beam and the bunched beam can be Fourier 
decomposed, as 

Introduction and 

During the stacking cycle at CBA, there will be a 
situation where the stacked coasting beam and the 
iniected bunched beam coexist and rotate in the same 
direction in a ring. In dealing with the coherent in- 
stability problems of such beams, it has so far been 
assumed that the two beams are not coupled through 
the coupling impedance of the environment, and thus 
we can discuss the instabilities of the two beams sep- 
arately. While this approximation is valid when the 
two beams are located inside the ring far away from 
each other, it becomes dubious when the bunched beam 
is brought closer to the stacked beam. Therefore, it 
is important that we learn how to deal with the prob- 
lems of two beams interacting strongly with each 
other and oscillating coherently. 

SB SC where D, and D, are constants, and V is the coherent 
tune of the collective motion. We choose the conven- 
tion that the real part of V is always positive. 
Also it is evident from (1) and (2) that a negative 
imaging part of V corresponds to an unstable situa- 
tion. 

Let us Iook into DB more closely. Denote by 
X(J!J-~$,) the line density of the a-th bunch with its 
center located at d, = ti, E 2lla/M, a = 1, 2, . ..M. 
h(6) is normalized to unity: rd$x($) = 1. 

There is, yet, another no less important reason 
why we should tackle this problem. It has been 
sugges ted 1 that during the stacking procedure, after 
the injection error of the bunched beam is corrected, 
we shall use only one dipole feedback system to damp 
out the transverse coherent instabilities of both the 
bunched and the coasting beams. The feasibility of 
using such a damper cannot be assessed unless we un- 
derstand the problem of two-beam instabilities, 
treating the action of the feedback system as part of 
the total coupling impedance.* 

Let y,(t) = B, exp(iw,t) be the rigid displacement 
of the a-th bunch. The dipole density DB can now be 
expressed as 

DB(ti,d = ii c” 8 A($-dJa) eiwot , 
B a=l a 

where iB is the number of particles per bunch. 

Zt is the purpose of this paper to investigate 
such two-beam coherent instability problems. We 
shall deal only with the symmetric, coupled rigid 
dipole mode of the bunched beams-interacting with the 
coasting beam modes. 

The major conclusion of this paper is that for 
a machine where the tune distribution is dominated by 
the sextupole contribution, such as CBA, a common 
dipole feedback system i-s enough to damp out the co- 
herent instabili~ties of both beams.3 

Substituting (4) into (31, and comparing the result- 
ing equation with (21, we obtain 

Coherent Tune 

In this section, we calculate the coherent tune 
V of the collective instability when M symmetric 
bunches B and a coasting beam C are present in the 
same ring and are interacting through the ring imped- 
ance and the damper. We assume both beams to be mono- 
chromatic with VB and V,C to be their respective 
tunes. 

s 
‘n will later on provide us with a high 

frequency cutoff factor. Fo 

k 
(9) = [exp(-@/2U2))/fiU, f 

a Gaussian bunch, 

n = exp(-U2n2/2). 
n is given by 

We are now ready to study the equations of mo- 
tion. 

We use a convenient variable I!J defined by ti = 
P+Iot, where n is the azimuthal angle around the 
ring, and 01~ is the revolution angular frequency. The 

*The work is performed under the auspices of the U.S. 
Department of Energy. 

Let us use the notation W{ for the self-ring- 
impedance of the orbit B, namely, the ring impedance 
through which the beam B interacts with itself. It 
is evaluated at the frequency (n-V)U,. We make a sim- 
ilar definition for W$. We also use Wz for the 
cross impedance between the orbits B and C. 

m 

D%,t) = c 3 einti+iVUot 
n f (1) 

0=-m 

DB($,t) = 1 D, e 
*B in$+iwll,t 

t 
n 

(2) 

Write 

03 
X(llr) = & c i .in$ . 

n=- n 
(4) 

is, 
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We should also include the effect of a common 
feedback damper. Let iK be the contribution of the 
damper to-the coupling impedance. Then the total im- 
pedances W's_are given by ifl = W{ t iK, i$ = 
Wg + iK and Wz = Wg + iK. 

The equations of motion are 

In (10) and (111, s is a parameter which classifies 
different eigen-solutions of the two-beam instability 
problem. 
Eq. (11). 

One obtains the coherent tune v by solving 
We observe that for a given value of s, 

the number of solutions for (11) is in general infi- 
nite. 

It is sometimes more convenient to use the fol- 
lowing set of equations instead of Eq. (11). 

Substitute ya = B, exp(iwot), and Eqs. (5) and 
(10) into (8) and (7). Then one obtains 

1 
",2 

a2DC($,t) + "2 C 

at2 
CD = 

(6) 

co 

-Ic c (3 8 
n=-m n n 

+,;; i"",) ein9+iw0t , dv2) i? = 
C nM+s 

and sC 
IC iZM+s DnM+s + I MNB 'nM+s %M+,q 8 c 2a 

&$) 2 
U$- dt2 + “B Y, = 

(7) 

and (12) 

-&I 1 (;; c + ;;: w;, einQ,+iwot , 
n 

h2-“;) b = 

a = 1, 2, . . . M, 
euo ,C i7 3 

nM+s nM+s B n nM+s nM+s 
where Ic is the current of the coasting beam. We 
shall use TB = ew,iB/2n for the average current per 
bunch and IB = M IB for the total average current of 
the bunched beams. The impedances W's are normalized 
to shifts in the squares of the tunes per unit 
current. 

Substituting (1) into (61, one obtains 

Equation (12) is a*secular equation for the 
eigenvalue v2 with (8, DC nM+s )as the eigenvector. 

For a uniform coasting beam the different revolu- 
tion modes n are decoupled because of translational 
invariance. However, this is no longer the case for 
bunched beams. For bunched beams, different revolu- 
tion modes are always strongly coupled through the rf 
focusing force which keeps the beams bunched.697 

Equations (11) and (12) tells us that when a 
coasting beam shares the beam chamber with the 
bunched beam, the different revolution modes of the 
coasting beam are coupled, with the bunched beam act- 
ing as the intermediary. 

We observe that both denominators of (11) have 
a simple physical meaning: If the two beams were not 
coup1 d by the ring impedance or by the damper, 
IB & f nM+s %M+s and IC ezM+s would represent 
the tune-square shifts for the bunched and the 
coasting beams due to the self-impedances and the 
feedback damper. The numerator IBIC (ii&+s)2 co"- 
ples the two beams. 

;c = ;” . 
n n Ic Q(~2-v;-Ic<) . (8) 

(81, 
Using y=(t) = B, exp(iw,t) and 
we obtain 

Eqs. (51, (7), 

x 

(9) 

e 
in($,-$, 1 

Solutions of the Damper Equation 

There is little hope of analytically obtaining 
a general solution of Eq.' (11). We shall content 
ourselves by solving the equation in two limiting 
cases. 

We observe that (9) is cyclic in the indices a 
and b (remember tha: $, = Zlla/M). And the solution 
of this equation is 

,s=1,2, . ..M. (10) 
To start with, we consider the case where 

and 

@&M+~)~ ) z / <’ ’ * (13) l= 
IBIC 

' -'B-'B i 'nM+s 'fM+s ' 
2 2 

(11) 
In such a weak coupling limit, the left-hand 

side of (13) characterizes the magnitude of the 
coupling between the coasting beam and the bunched 
beam. Since two different revolution modes of the 

’ 'nM+s 
(~;M+s)~ 

n 
v2-"*-I GC * 

C C nM+s 



coasting beam couple to each other only through the 
bunched beam, the magnitude of their coupling should 
be of the order of the above quantity squared. 

The condition (13) is appropriate for CBA when 
the bunched beam and the coasting beam are respec- 
tively on the injection and the stacking orbits. 

Under (13) the solutions of (12) can be found 
perturbatively9 yielding the following eigenvalues: 

u* c v* 
B + $3 ' 'nM+s ij8,M+s + n 

(14) 

'B'C ' ‘nM+s 

(ijXnM+d* 

n 22' 
vB-vC 

and 

v2 c "2 + 1 -c 
c C 'nM+s + 

(15) 

IB'C 
(i;,,,) * 

Equation (15) gives one eigenvalue for each value of 
n. 

The meaning of (14) and (15) is that under the 
condition (13), the feedback system damps the two 
beams almost independently. 

Let us now go to the other extreme limiting 
case, when the orbits B and C coincide. 

In this case, we have 

=v IV 
"B C 1' (16) 

and 

(17)' 

Equation (11) now reads: 7. 

l= IBIC x 

u2-w:-IB c &,M+s tjnM+s 
n 

(18) 

is a solution of (18). This mode is neither growing 
nor damping but is just stable. Substituting (16), 
(17), and (19) into (a), we find 

T 

gc z-p 
nM+s nM+s * (20) 

In this mode, the part of the coasting beam 
which overlaps the bunched beam oscillates out of 
phase with the bunched beam, while the remaining part 
of the coasting beam stays unperturbed. The net ef- 
fect is that the total dipole moment of the two beams 
vanishes everywhere. The damper, of course, cannot 
act on this mode; and yet, the mode is stable. 

There are in general an infinite number of solu- 
tions of (18) other than the one given by (19) and 
(20). One can prove by some algebraic inequality ma- 
nipulation of (18) that all these solutions are 
damped, namely, Imaginary (v2) > 0, provided the 
damper strength K is large enough that the imaginary 
part of Wn is positive. 

We have discussed the solutions of the trans- 
verse damper equation in the two limiting cases. A 
computer investigation of the intermediate cases is 
performed using the CBA parameters and the Courant- 
Month Green's function.8 The conclusion of that in- 
vestigation is that a common feedback system will in- 
deed work for both beams in CBA. 
study will be published elsewhere. 
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From observation, we find immediately that 

u =v 1' (19) 


