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LONGITUDINAL INSTABILITIES OF LONG GAUSSIAN BUNCHES* 
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Abstract 

We present an overview of the longitudinal insta- 
bilities of Gaussian bunches subject to a harmonic RF 
potential. Our emphasis is on the behavior of long 
bunches having lengths greater than the wavelength of 
the perturbing electromagnetic fields. We exhibit the 
crossover between the dominance of the synchrotron 
modes and the coasting-beam-like distortions of the 
bunch distribution, which occurs as the real or imagi- 
nary part of the coherent oscillation frequency be- 
comes large compared to the synchrotron oscillation 
frequency. For a narrow band impedance the growth 
rate of the coasting-beam-like modes is determined by 
the average beam current, and for a broad band imped- 
ance the growth rate is determined by the peak cur- 
rent. We discuss the transition between these two 
regimes by considering the growth rate as a function 
of the bandwidth of the impedance. 

integer j varying from j = - a,...,-, and f 
metric multibunch mode number s = 0,1,2,. . 
ing $,(J,R) = r cos B in Eq. (21) of ref.', 
trix element Tmn is found to be given by 
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where Zn E Z,(nw, + ti) denotes the longitudinal 
impedance, and we have defined 

Q = R/ws, (5) 

Mathematical Formalism 
2TK = eao~/2rrEo , (6) 

Our starting point is the treatment of cohyrent 
instabilities developed by Wang and Pellegrini, and 
our notation follows t?lat of Krinsky and Wang* appear- 
ing in these proceedings. We shall confine our atten- 
tion to the case of Gaussian 

b 
uqches subject to a har- 

monic RF potential, IJo = ws$ /2, where ws is the 

angular frequency of the synchrotron oscillations, and 
$ is the aztmuthal angular coordinate relative to a 
synchronous particle with angular revolution frequency 
w. and energy Eo. Cur interest is in the condi- 
tions required for the line charge density x(g,t) to 
exhibit a coherent oscillation of frequency R, i.e. 
for i(,$,t) to have the form: 

with a being the momentum compaction. 

The representation of the matrix element T,n 
given in Eq. (li) can be simpLified by employing the 
two integrals: 

J2Y2 
dRexp(ia cos(8+8’)-ibcos3)=2nJo( a +b -2abcos8’ ), 

-2n (7) 

m2 
jr drexp(-ar2)JI(br)=(bi4a2)ex?(-b2/4a), (8) 
0 

X($,t) = p,(4) + d9)exp(-int). (1) 

Here, ~~(6) denotes the line charge density of the 
unperturbed bunch and p(‘#)exp(-ifit) is the coherent 
perturbation. 

where Jk(X) is the k-th order Bessel function. In 
this manner, we find the following representation for 
T mn involving only a single integration: 

Let us suppose there to be M equally spaced 
bunches each containing N/M particles. We assume the 
distribution function corresponding to the unperturbed 
bunches is 

2 

Tmn’ 

-iawoeI 
av ~xp(-(/ml-/nI)'L2/2)H(mnL2,Q), 

2nE .‘L2 n 
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0 s 

Ye(J) = -JL- 2 exp(-J/wsL2), 
21rwsL 

(2) 

with I,, = New,/Zn the average current, and 

H(x,Q) = -x exp(-1x1) A(x,Q) 

0 
[1-exp(ZniQ)]A(x,Q)= i d&in6exp(-iQB+xcosR). (II) 

-2r 

where L is the bunch length in radians, e the electric 
charge of a particle, and the action-variable J is re- 
lated2to the synchrotron oscillation amplitude r via J 
= wsr 12. Introducing the Fourier transform on of 
the perturbation p(4) and using the linearized Vlasov 
equation, the coherent oscillations are found to be 
described by the infinte set of linear equations:’ 

The relationship between this integral representation 
and the conventional expansion in synchrotron modes is 
estabished by using in Eq. (11) the generating func- 
tion for Ik - Bessel functions , yielding 

ET P =pm, mn n 
n 

(3) 

A(X,Q) = - 4 kIkW k=-m k-Q’ 
where the summation is restricted to n = Mj + s, for 

t National Synchrotron Light Source 
tt Colliding Beam Accelerator 

The synchrotron mode expansion of Eq. (12) is useful 
when one synchrotron mode dominates, however, when 
many synchrotron modes contribute, then the integral 
representation of Eq. (11) is more appropriate. 
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Short Wavelength Limit 

Let us consider the case when the wavelengths of 
the perturbing electromagnetic fields are short com- 
pared to the bunch length. Using the integral repre- 
sentation of Jqs. (9) - (ll), we derive an asymptotic 
expression for Tmn valid when mL and nL are large 
compared to unity. This representation explicitly 
shows the cross-over behavior between synchrotron mode 
oscillations and coasting beam like perturbations of 
the line charge density. 

To proceed we rewrite Eq. (11) defining A(x,Q) in 
the form: 

xA(x,Q)= -exp(x)+ & 
0 

We restrict our attention 

(Q\<<lxl and lImQ)<< 

and we find for I+=: 

de cosQ(n-0) exp(xcosB).(13) 

to the case when 

(14) 

H(x,Q)=l-(Qcot*Q)c(x,Q)-Qs(x,Q), x>o, (15a) 

H(X,Q) = 2 c(-x,Q) 
slnnQ , (15b) 

w'nere we have defined 

c(x,Q)+is(x,Q) = f d8 exp(-x82/2 + iQ8) . 
0 

(16) 

Now we note that 

c(x,Q) = m exp(-Q2/2x) (17) 

and 

1 + iQc(x,Q) - Qs(x,Q) = h(Q/Jx) , (18) 

where the dispersion integral h(x) is defined by1 

h(x) = 7 6d8 exp (-8*/2 + ix8) (19) 
0 

-' d< 
I- 

eip(-C2/2) = - 

(c-d2 - 
(20) 

--Ji;; 

Employing Eqs. (17) and (18) in Eqs. (15a, b), we find 

H(x,Q) = h(Q/G) - JT(i+cotnQ)-$ exp(-Q2/2x),x>o,(21a) 

, x<o . (21b) 

The desired asymptotic representation 02f Tmn 
follows from using Eqs. (Zla,b) with x = mnL in Eq. 
(9). The poles at Q = integer of the function cot xQ 
in Eq. (21a), correspond to the synchratron oscilla- 

leaving the coasting beam 
type of behavior exhibite: by h(Q/&). 

In the case of a coasting beam different revolu- 
tion modes m and n are not coupled. On the other 
'land, these modes are coupled for a bunched beam by 

the matrix Tm,. When nL and nL are large in mag- 
nitude, and the growth rate is fast, ImQ >> 1, then 
Eq. (21b)Fhows that the coupling between modes with 
mn < o becomes negligible. HelICe, there is no cou- 
pling between the slow and fast waves. It is also 
seen from Eq. 
,::,i',s:,~;;e/~:~~ Eqf c; it,:: :';oAa::i ::,t 

, even when the growth rate is slow. 

It therefore follows that when lmnl L2 >>l and 
either IF&Q\ >> m L or ImQ >>l, one has 

2 -iaw e1 2 
T = 

mn 
2nE 12L2 

av 
4 Nm-n)h 

0 s i 

--Q-', , mn>o, (22a) 
L&G ,I 

T - 0 nn 
, mn<o , (22b) 

where t?,(n) = exp(-n2L2/2) is the Fourier transform of 
the unperturbed bunch density, p,(e)= exp(-$'/2L2). 

Narrow Band Impedance 

As an example we consider a resonant impedance 
with bandwidth so narrow that it may be approximated 

by 

Zn 
=Zn6nn +z* 6 (23) 

0 ’ 0 
n 

0 
n,-n ' 

0 

where 6, ,, is the Kronecker delta function. 
Although'tge approximation of Eq. (23) violates cau- 
sality, as embodied in the Kramers-Kronig dispersion 
relations, it is useful as an illustration of the for- 
malism under study in this note. We take n,L >>l, 
and we suppose that either ReQ or ImQ are large so 
that Eqs. (22a,b) are valid. It then follows from 
Eqs. (3) and (27.b) that the coherent frequency 0 is 
determined by 1 = Tno,no, which upon using 
Eq. (22a) becomes 

-icxwzeI Z 
avn ' 

l= 
2nEoc2 no 

o h :sJ;; ' (24) 

where o = w,L is the spread in revolution frequency 
among particles in a bunch. Eq. (24) has the form of 
a dispersion relation for a coasting beam with current 
I av' 

The Fourier transform of the perturbation to the 
line charge density is seen from Eq. (3) to be pm a 
T. 
Ft%ier 

Using Eq. (22a) and performing the inverse 
transform, we find that the perturbation p($) 

is given up to a multiplicative constant by 

PC+) = -$ (exp(ino+) PO(b)) . (25) 

Broad Band Impedance 

Consider a high-frequency broad-band impedance 
satisfying 2,-Z no, for ln-n,l<A, where no>> A>>l/L. 

Since the range of the wake field, l/A, is short 
compared to the bunch length L, and certainly short 
compared to the spacing between bunches, we can ignore 
interaction between 
assume one bunch to 
n 

0 
- A < m,n < no + 

-iuwzeIo 

T m- 
mn 

2nEou2 

bunches. To ease the notation we 
be in the ring (M = 1). For 

A, we approximate Eq. (22a) by 

2 

2 h(fi/nou)3(m-n) , (26) 
0 
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We see that p( $) is a plane wave modulated by the 
function fA($-s), which is sharply peaked about $I = 
5 with peak width of order l/A. The detailed struc- 
ture within the peak depends on the short distance be- 
havior of the wake field, which has been ignored in 
our approximate treatment, and hence is outside the 
scope of our discussion. 

Let us close by cgmmenting on the attempt made by 
Messerschmid and Month to describe the microwave in- 
stability. Their approach was based upon the ansatz, 

P(O) = exp(in,+) Po( $)I where P,( 6) is the un- 
perturbed bunch density. This has the form of a plane 
wave modulated by a shape function, however, the shape 
function is always taken to be p,($) independent of 
the bandwidth, A, of the impedance. Our discussion 
shows that this is incorrect, and that the shape func- 
tion should have a peak width of order l/A, the range 
of the wake field. This local behavior is closely re- 
lated to the peak current dependence4 of the coherent 
frequency for A >> L/L. The ansatz of Messerschmid 
and Fbnth3 is more appropriate to the case of a narrow 
band resonant impedance with bandwidth A << l/L. Then 
the coherent frequency depends on the average current 
[see Eq. (24)] and the perturbed density is approxi- 
mately as given in Eq. (25). 
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where I, is the average current of the single 
bunch. To proceed we approximate the infinite 
linear equations (3) by a finite subset, 

7 
no+A 

pm= z T P mn n ’ 
n-no-A 

(m-no/LA . 

In this case we make use of the representation 
T mn given in Eq. (26) , and our problem reduces 
solving the following eigenvalue problem: 

no+A 

AA” = t’ 
m 

B(m-n) v 

O-A 

n ’ 
n=n 

set of 

(27) 

for 
to 

(28) 

The coherent frequency is determined in terms of an 
eigenvalue AA by the dispersion relation: 

-iam; eI,A A 7 

1 = (29) 
2TEo0 

p h(Q/noo) . 
2 0 

Since B(m-n) is sharply peaked about m = n, the 
peak width being of order l/L << A, we expect that the 
largest eigenvalues do not depend strongly upon the 
cutoff value A. Iherefore, they should be closely 
approximated by the eigenvalues of the easier problem 
which results when A + m. In this case the eigen- 
functions of Eq. (28) become vn(~)=exp(-ing) and the 
corresponding eigenvalues A”( :) = X6(n) exp(ing), 
where o < ; < 2n parametrizes the different 
eigensolGtions. When the bunch length is short 
compared to the ring circumference, L<<l, then1 

the largest eigenvalue Azax = GX= I peak/ IO, where 

I eak is the peak current of the bunch. To 
.E 1 lustrate the rate of convergence as A -t m, we plot 

in Fig. 1, the ratio A~ax/~!~ax, as a function of LA. 

It is seen that when LA > 3, the ratio is greater than 
90%. Hence, for LA > 3, it is a good approximation to 
replace IoAA by Ipeak in the dispersion relation 
of Eq. (29). 

To gain some insight into the nature of the 
perturbed line charge density, we take as an 
approximation to the eigenvectors of Eq. (28), 

-i 

exp(-ini) In-n, I 5 A 

F, = 

0 In-n,] > A 

The perturbation to the line charge density is 

“,+A 

PC,+) = 1 
n=n -A 

exp(in(C~))=exp(in(~-~))fA(~-~) , 

0 

where 

f,(N) = 
sinI (+<)I 

sint ($-5)/Z] ’ 

(30) 

(31) 

(32) 

, ,o ,--- ._.- ~~- / I I 

,LLL_, 0 2 4 6 

LA 

Fig. 1. The ratio of the largest eigenvalues corres- 
ponding to finite bandwidth A and infinite 
bandwidth, plotted against LA, where L is the 
bunch length in radians 


