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LONGITUDINAL INSTABILITIES WITH A NON-HXIL"ONIC RF POTENTIAL* 

7 S. Krinskyt and J. M. Wang77 
Brookhaven National laboratory, Upton, N.Y. 11973 

Abstract 

We consider the longitudinal instabilities of a 
bunched beam subject to a non-harmonic RF potential. 
Assuming the unperturbed bunch to be described by a 
Yaxwell-Boltzmann distribution, our treatment is based 
upon the linearized Vlasov equation. The formalism 
developed is exact, and in particular, correctly de- 
scribes the efi'ect of the dependence on amplitude of 
the synchrotron oscillation frequency. We discuss the 
fast blowup limit, and extend Wang and Pellegrini'sl 
treatment of the microwave instability to include the 
case of a non-Gaussian bunch. Next, within the short 
bunch approximation, we derive the dispersion relation 
describing the Landau damping of the coupled bunch 
modes, resul:ing from the use of a Landau cavity. 

Equations of ?lotion 

The azimuthal position of a circulating particle 
relative to a stationary observer is denoted by angle, 

0, and 6 is the instantaneous value of the angular 
velocity. Relative to a synchronous particle of 
energy E, and angular velocity oo, the azimuthal 
position is 0 = 0 - tiot and the energy is e=E-E,. 
Assuming the energy E, to be large compared to the 
rest mass, the equations of mqtion describing the 
synchrotron oscillations are: 

. 
$I = - ctoo~/E (1) 

0 

d = 2 [v,,w + vp,t)] . (2) 

Here, e is the particle's electric charge, a the 
momentum compaction, V,,(e) the RF potential, and 
Vi(+,t) the induced potential resulting from the 
impedance of the ring. 

In the absence of the induced potential, the 
equations of motion are derived from the Hamiltonian: 

Ho = ; p* + uo($‘) , (3) 

with 

Uo($) = 22 7 de' V,,($') . 
0 0 

(4) 

Under the canonical transformation3 from p,$ to 
action-angle variables .J,3, the element of phase space 
area is invariant, dpd$ = dJd8, and the transformed 
Hamiltonian is a function only of the action variable 

.J=&dpd$ , 

The new equations of motion 
where w,(J) = dH,/dJ is the 
oscillation frequency. The 
determined as a function of 

4 = 9,(J,O) 

(5) 

. 
are J = o and i? = w,(J), 
angular synchrotron 
azimuthal position 4 is 
J and 0 by 

(6) 
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with periodic $. satisfying ~,(J,O+Z~)= $,(J,e). 

To describe the effect of the induced potential, 
we introduce the distribution $(p,$,t), normalized to 
the total number N of particles in the ring, 

i dpd$ b(p,$,t) = Ne , 

and the line charge density 

(7) 

h(b,t) = jdp$(p,+,t) . (8) 

Gur goal is to determine the conditions required for 
the line charge density to exhibit a coherent oscilla- 
tion with frequency fi, i.e. 

x(Q,t) = PO($) + p($)exp(-iat), (9) 

corresponding to an induced potential of the form 
Vi(g,t) = Vo($) + Vi($)exp(-iRt). We shall ignore the 
time independent potential well distortion, V,($), 
and concentrate our attention upon the coherent term, 
which is related to the ring impedance '&(w) and the 
Fourier transform of the perturbed line charge density 
P, by 

Vi($) = - o. I: P, Zn(nwo+Q)exptin+). (10) 
n 

The Vlasov equation for the distribution J, is 

2 + [4',Hl = 0 , (11) 

where [$,H] is the Poisson-Bracket between $ and the 
full Hamiltonian: 

CL0 eo aoLJ, 0) 

H=Ho(J)+< $ o i d$' Vi(p')exp(-int). (12) 

We look for coherently40scilLating solutions of F.q. 
(ll), having the form, 

J, = q,(J) + Y$i(J,B)exp(-iQt) , (13) 

and we shall assume the equilipium distribution 
q,(J) to be Maxwell-Boltzmann: 

4'o(.J) = A exp(-Ho(J)/a2) . (14) 

In terms of she variabl$s p and $, clearly, $,(p,$) 
a: exp(-p2/2a - U,(Q)/u ), showing that o represents 
the one-standard deviation spread in revolution fre- 
quency among particles in the bunch. From Eq. (2) it 
follows that o is related to the energy spread uE 
via 

aw 
cl=~u 

E. E' (15) 

The constant A in Eq. (14) is determined from the 
normalization condition of Eq. (7). 

To proceed we now insert Eqs. (12) and (13) into 
the Vlasov Eq. (ll), and linearize the result dropping 
terms second-order in $i, obtaining 
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a*. 
-ifiQi + W,(J) $ = x(J,0), (16) 

where x(J, :‘) = x(J,8+2n) is defined by 

x(J,9) = 22 $,’ 0 
0 

and 9;(J) = d+o/dJ. 
can be written: 

aoo(J,@) 
J)vi[+,(J,e)! ae , (17) 

The periodic solution of Eq. (16) 

where we have defined 

Q(J) = R/us(J) . (19) 

Eq. (18) has the important property that it expresses 
the perturbed distribution $i(J,B) in terms of the 
Fourier coefficients on of the line charge density. 
Since, on the other hand, the line charge density is 
derivable from the distribution according to Eq. (a), 
one is led to the following infinite set of linear 
equations determining the Fourier coefficients of the 
perturbed line charge density: 

7 T pm= u mnPn ’ n= -co 

where the matrix Tmn is given by 

T mn 

*TV- a 9 d8exp(in$o(J,e+e’)-im$o(J,e)) , (21) 
-2n 

tiith 2n~ = eaw,B/2nE and Z 0 n = Zn(nwo+R). 

The coherent frequency n is determined by the con- 
dition that the matrix T have an eigenvalue equal to 
unity, and the coherent perturbation to the line charge 
density is the corresponding eigenvector. A represen- 
tation of T in terms of synchrotron modes follows upon 
defining the coefficients Fu(n,J) by 

m 

exp(inoo(J,B)) = 1 Fu(n,J)exp(iue) , (22) 
p-m 

and applying Eq. (22) to Eq. (21), yielding 

T = mn 
- 2niK + yp ‘jaJ$;(J) F’~“;:)~~:“yJ’ . (23) 

“=-co 0 S 

This expansion is useful when one synchrotron mode dom- 
inates, however, when [many synchrotron modes contribute 
the representation of Eq. (21) is preferrable. 

Microwave Instability 

We can now extend Wang and Pellegrini’s’ treatment 
of the microwave instability to a Non-Gaussian bunch 
interacting ~with a non-harmonic RF potential. The 
microwave instability is characterized by coherent 
modes with growth rates large compared to the 
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synchrotron oscillation frequency, driven by perturb- 
ing electromagnetic fields having wavelengths short 
compared to the bunch length. Let L denote the rms 
hunch length measured in radians. We assume a broad- 
band high frequency impedance satisfying 2 J 2 , 

for In-n,l<A, where n,>>A>>l/L. The bandw;dth? 

is of the order of the inverse range of the wake 
field. 

Assuming ImQ(J)>>l in Eq. (21). we may expand the 
function $o(J, ‘B+e’) in a Taylor expansion about B’=O. 
Then performing the change of integration variables: 

(J,fJ) + ti,‘$) and 0’ + w,(J)S, we derive the fol- 
lowing asymptotic representation for Tmn, valid for 
“0 - A<m,n<n, f A: 

T = mn h (6) B(m-n) , (24) 

where 

m 

h(x) = ./ SdCexp(-S2/2 + ix0 . 
0 

(25) 

and B(n) is the normalized Fourier coefficient of the 
unperturbed bunch density, p,( $)a exp(-U,( $)/o’), 
i.e. 

m 

B(n) jdWo(0) = qdOooCQ)expC-in$) . 
-m 

(26) 

In Eq. (24) we have used Eq. (15) to express o in 
terms of us, and we have denoted the average hunch 
current by I,. 

When all eigenvalues of Tm, have magnitude less 
than unity, there can be no solution to Eq. (ZO), and 
this fact allows the derivation of a stability crite- 
rion. Since B(n-n) is sharply peaked about m=n, the 
width of the peak being of the order l/L<<A, the larg- 
est eigenvalues of Tmn should be well approximated 
by extending Eq. (24) to the entire range -=<n,n<m. 
Within this approximation, the threshold of the insta- 
bility is determined by the largest eigenvalue, Amax, 

of the matrix B(m-n). iJsing the fact that h(x) < 1 I I- 
for Im x > 0, we see that there exists no coherent 

frequency-with ImR>o as long as 

When the hunch length is short compared to the circum- 

ference of the ring, L<<l, we find 

2rr 
I 

A - peak . 

max = /doexp(-uo(o)/02) IO 
. (28) 

Therefore, in Eq. (27), we replace I,!+,,,, by the 
peak curtent Ipeak of the bunch, obtaining the 
Boussard stability criterion, derived originally on 
the basis of an intuitive physical argument. Boussard 
noted that when the perturbing electromagnetic fields 
have wavelengths short compared to the bunch length, 
the bunch looks like a coasting beam with current 

Ipeak. 
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Landau Cavity 

A Landau cavityi, operates at a multiple OE 
the fundamental RF frequency, with its voltage and 
phase chosen such that for small amplitude oscilla- 
tions the RF "potettial energy" defined in Eq. (4) 
becomes IJo($) = b$ /4, with b>O. The use of such a 
cavity results in a2non-Gaussian bunch density, 
P,($)- exp(-3,($)/0 ), and an increase of the rms 
bunch length. Hence, the use of the Landau cavity re- 
duces the peak current and allows the threshold 
(expressed in terms of average current) of the micro- 
wave instability to be increased. Also, because of 
the nonlinear restoring force, the Landau cavity pro- 
duces a large spread of synchrotron oscillation fre- 
quencies within the bunch. This provides stability, 
via Landau damping, against coupled bunch instabili- 
ties. 

Neglecting the effect of the ring’s impedance, 
the synchrotron oscillations in the presence of the 
Landau cavity are described by [see Eq. (6)]: 

$,(J,e) = r cn(2KBin) , (29) 

where en(x) is the Jacobi elliptic function of modulus 
k = l/i?, and K = K(l/fi) is the elliptic integral of 
the first kind. The amplitude r is related to the 
action-variable by J = 2K& r3/3n, and the distribu- 
tion in oscillation am litude 

e 
of the unperturbed bunch 

is $,(r) = A exp(-r4/ro). The normalization constant 

A is determined by Eq. (7), and r]: = 4oZib. Since the 
equation of motion is nonlinear, the synchrotron 
frequency varies with oscillation amplitude, 

us(r) = has > with Aws = -$ 6 r. . (30) 
0 

Let us suppose the wavelengths of the perturbing 
electromagnetic fields are long compared to the bunch 
length. We use the synchrotron mode expansion of Eq. 
(2.31, and assuming nr<<l, we approximate 

Fp(n,J) * inr@u , (ufo) (31) 

with n/Q = J2 K cosh[(u-l/Z)a] for 11 odd, and 0p = o 

for p ev:n. When Eq. (31) is used, the matrix T be- 
comes of rank one, and we can derive the dispersion 
relation 

(32) 

with 

The neglect in Eq. (32) of synchrotron modes with 

1' 
‘4 >I is justified due to the rapid decrease of 8p 
or increasing v. 1n the case of M equally spaced 

bunches each containing N/M particles, we define the 
effective impedance Z,ff(Q) corresponding to fixed 
multibunch node number s = O,l,Z...,M-1 by Z,ff(Q) = 
lnZ(nw,+fl), where the sum is restricted to n = Mj+s 
(with j integer), and we consider the sum to be cut 
off at n -1/L. The average current in the ring is 
denoted I,, = New,/2n. In Fig. 1, we plot Im G(q) 
against ReG(q) at threshold (Inq = O+) and above (Imq 
= '2.1). 

As evidence that the neglect of higher-order 
synchrotron modes is justified in the derivation of 
Eq. (32), consider the limit Ifl(>>Aws. In this 
case, when all higher-order modes are retained, one 
obtains 

(34) 

which has the form ofBa superposition of coasting beam 
dispersion relations. One can check that in the same 
limit, Eq. (32) agrees with Eq. (34) to 1% accuracy. 
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