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A DISPERSION-FREE LONG STRAIGHT SECTION FOR A FIXED-FIELD ALTERNATING-GRADIENT SYNCHROTRON *
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The FFAG
signed to be ’'scaling" in

synchrotron is
order to

generally de-
assure that

resonances are not crossed. In compact designs,
where the spiral angle and radial gradient are
very high, it is necessary to depart from pure
scaling by inserting radial cuts in order that
there be room for rf cavities, etc.l It is shown
here that a doubly symmetric set of six gradient
magnets will provide an insertion that matches

the structure for all momenta, providing in addi-

tion a long drift space that is free of dispersion.2
With the space thus provided for rf cavities, very
high repetition rates are possible. Such a ring
also provides an attractive means of accumulating
equilibrium distributions of feeble heavy ion beams
by placing a stripping feil in the dispersion-free
section.

Introduction
An FFAG synchrotron appears to be

an ideal solution for the high flux and time struc-
ture required for a spallation neutron source such

as the planned SNQ at KFA. For a given space
charge limit, very high currents may be acceler-
ated by increasing the repetition rate. Moreover,

because the field is static, the maximum rf acceler—

ating voltage may be applied throughout the ac-
celerating cycle--in marked contrast to the rapid
cycling synchrotron. With a static field, downtime

due to failures, losses and their activation prob-
lems should be far smaller than for an equivalent
rapid cycling synchrotron.

The classic FFAG machine that was
so fully stidied at MURA is scaling. That is,
every equilibrium orbit is a photographic enlarge-
ment of every other equilibrium orbit. This pro-
perty simplifies the design in that a design good
for one energy is autematically good at all ener-
gies {with regard to resonances and other single-

particle instabilities). The betatron frequencies
are constant, and thus no resonancés are crossed.
However, such machines are highly periodic and
provide little or no drift spaces for placing of

rf cavities or injection and extraction components.
The need for ample drift space to contain radio
frequency cavities is a particular concern for
rapid-cycle high-intensity machines where a very
large accelerating voltage must be provided.

The radial sector FFAG accelerator
is expensive for high energies because its circum-
ference factor is around 6. The spiral accelerator
can have a circumference factor less than 2 --
less than a normal synchrotron. To keep the ra-
dial aperture small, the magnetic field rises rap-
idly with radius. It is then necessary, in order
to achieve adequate wvertical focusing, to have
a wvery tight spiral where the equilibrium orbit
crosses the magnet edges at an angle of around
10-15 degrees. With such a spiral, there is no
radial line along which rf cavities may be placed.

The solution to this dilemma at MURA
was to introduce radial cuts in the magnet struc-
ture. [t was shown that this could be done in
a manner such that the betatron frequencies were
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perturbed within acceptable limits, and adequate

stable phase areas were obtained.1 However, the
cuts were very small in the azimuthal direction,
and they did eliminate the scaling property.

Another approach, possible for machines
witha small momerbum range 1is that being explored at Ar-
gonne National Laboratery where a moderate spiral
angle and large flutter provide adequate space for

the insertion of cavities.
A third solution would be to provide in-
sertions that perfectly match the FFAG and include

adequate drift spaces. This is the approach that
is addressed here.

Insertion Requirements

The first difficulty is that the Twiss
parameters vary enormcusly along a radial line,
and thus the insertion must match to this range
of parameters. It is easy to show that the beta-
tron phase advances in the insertion must be multi-
ples of m in order tc meet this condition. Then
the matching problem is one of providing adequate
aperture for the range of Twiss parameters provid-

ed.

1t is obvious that to match the disper-
sion in the radial plane, the insertion must pro-
vide a phase advance in the radial plane that is
a multiple of 2r (i.e., provide an identity trans-—
formation in the radial plane).

Because of the momentum range, quadru-
poles cannot be used to provide focusing; focusing
must be provided as in the FFAG: by means of ra-
dial gradients and edge angles.

The design should provide some scrt of
scaling with momentum in order that a solution at
one momentum will alsc be a solution at other mo-
menta.

Were the momentum range narrow, the
pi-2pi straight section would provide such a solu-
tien. The problem is then to design a similar in-

sertion using only bending magnets such that the

scaling criterion is met.

With these transformation properties, the
insertion may be translated upstream or downstream
without affecting its matching properties (that is,
a portion of the initial drift space may be moved
to the last drift space). Moreover, the insertion
need not be placed at a radial cut in the FFAG lat-
tice, but the lattice may be cut aloeng an arbitrary
curve in such a way as to minimize the excursion
of the constituent orbits within the insertion. For
example, the cut might be made along a magnet
spiral.

Some Symmetry Considerations

We shall use matrix metheds to locate
a solution using the results of Herrera and Bliam-

ptis.4 We assume that the insertion is composed of
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several identical with specified symmetry

properties.

parts

Here, as the planes are assumed to
be uncoupled in the linear approximation and there
are no linear dispersive terms 1in the vertical
plane, we treat the radial motion by means of a
3X3 matrix acting on the vector (x, x', Ap/p),
and we treat the wvertical motion using a 2X2 ma-
trix acting on (z, z'). Thus the size of the
rmatrix shows in which plane it acts.

Systems with Reflection Symmetry about the Midpoint

The radial-plane identity transfer ma-
trix is satisfied provided the off-diagonal matrix
elements of the midpoint transfer matrix vanish
( 7 phase advance), and the off-energy trajectory
is displaced from but parallel to the reference
trajectory at the midpoint.

Such an insertion will provide a disper-

sion-free central drift space for a machine with
a particular momentum compaction. It has been
shown in a previous paper by the author that it

is possible for this type of insertion to be disper-
sion free at the center while retaining the desired
transfer characteristics through the entire inser-

tion. Symmetric systems comprising bending mag-
nets will have dispersion in the central drift for
entering dispersion-free beams, but will eliminate
the dispersion in the center for a properly matched
value of the momentum compaction entering it.

A dispersion-free drift space is a par-
ticularly desirable location to place a stripping
foil as energy losses in the foil will not increase
the amplitude of betatron oscillations. 1In an FFAG
the beam width in such a drift space will be quite
small which should be helpful in the design of
the rf cavities.

Such a drift space provides a very
interesting capability for heavy 1ion accumulator
rings. A stripper can be placed in the dispersion-

free section of the insertion, and all charge states
leaving the stripper will be on stable orbits,
thereby providing the means of injecting signifi-
cant currents of heavy ions even though the injec-
tion energy 1is insufficient to fully strip most of
the ions.

For the purpose of this paper, we consi-
systems where each half of the insertion
a further symmetry property about its
This additional property considerably
reduces the number of conditions to be met. Oof
course, such systems will have drift spaces at
the ends with the same total length as that in
the center of the insertion. (It has been shown
previously by the author that it is possible to
place all of the drift length of a pi-2pi insertion
in the center. )

der only
inself has
midpoint.

The requirements for the wvertical plane
are simply that the diagonal matrix elements must
vanish at the midpoint.

Symmetry Implications for the Half Insertion

If each half of the insertion were to
possess  antisymmetry with respect to reflection
about its center, then all the conditions are
satisfied provided (1) the diagonal elements of
the radial matrix vanish, (2) the dispersive dis-
placement vanishes, and (3) the product of the
diagonal elements in the vertical plane equals 3-
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-all evaluated at the midpoint ef the half inser-
tion. With this condition, the entering dispersion
is reversed ‘at the center of the dispersion.
X
inserticn is symmetrical
with respect to reflectiecn through 1its midpeint,
the conditions to be satisfied are the same except
there are no conditions on the dispersion.

If the half

Two-Cell System Without Reflection Symmetry

[f the insertion comprises two identical

cells then the conditions are met providing the
diagonal elements of the wvertical matrix wvanish
at the end of the cell, and the radial matrix,
without regard for dispersion, 1is the reflection

matrix (inverts displacements and slopes).
A Solution

It is possible to satisfy the conditions
with a symmetrical array of six gradient magnets,
two of which are reverse field magnets (such as
are found in a radial-sector FFAG). For simpli-
city, we consider a system that possesses the addi-

tional property of each half possessing reflection
symmetry about its midpoint. The separation be-
tween magnets of each half is arbitrary. All
magnet edges are parallel. The positive-field
magnets have positive (radially-focusing) gradi-
ents, whereas the negative magnets have negative
gradients. Thus the configuration 1is appropriate

for scaling over the range of energies to be con-
tained. The absolute value of the magnetic field
in all magnets increases in the radial directicn.
The total bending angle is zero. As mentioned
above, for any choice of the free parameters,
there is one entering momentum compaction that
will result in no dispersion within the central
drift space.

Envelope plots are shown for the radial
and vertical planes in the following figure which
also shows the equilibrium orbit of a higher ener-
gy particle. The insertion 1is assumed to have
been made at aradial plane of symmetry in a ra-
dial sector FFAG. The lower portion of the figure
shows orbits of three different momenta. The ra-
dial scale is exaggerated for the sake of clarity.
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The gradient 1in the positive magnets

is comparable to that in the FFAG at the point
of insertion. That in the negative magnets is smal-
ler thereby causing the equilibrium orbits for
different momenta to move together. The difference
in rigidity causes ar immediate momentum separa-
ticn at the ends of the central drift space.
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Taking the radius of curvature in the
bénding magnets (all the same) to be one unit,
the arc lengths for the bending magnets are 0.17453
(the middle magnet is twice this length) so the
angle of bend in the magnets for one fourth of
the insertion is ten degrees in then ten degrees
out. The magnets are separated by 0.053702 units,
and the longer drift spaces are 0.46011 units.
The field index of the positive magnets is -19.4469
and that for the negative magnets is 15.000.

Scaling
In a scaling FFAG, all lengths scale
with the average radius, the field scales with

the radius to the kth power, and thus the momen-
tum scales with the (k+1Hh power of the radius.
Here, such a scaling would make the length of
the insertion dependent upon the momentum; this
is clearly unacceptable as the insertion is to be
placed in a radial cut.

We can, however, scale in the radial
direction only. Consider the independent solutiens
to the linear equations drawn in the figure below.
If we stretch the figure arbitrarily in the radial
direction, the resulting figure will satisfy all
the conditions necessary for the insertion to pro-
vide an identity transformation in the radial plane

and an inversion transformation 1in the vertical
plane. The size of the beam at the midpoint will
in general be a function of momentum. Making
this scaling does impose a relationship between

the radial gradient and the field which must be
satisfied in order to allow scaling to cover a sig-
nificant momentum range.

Insertion Showing Linearly-Independent Trajectories
for Small Displacements.

Resonances

Reducing the periodicity drastically
by means of insertions significantly increases
the number of resonances that are driven. This

is of particular concern

in an FFAG where thee are

strong nonlinear driving terms, and any particular

design would have to be evaluated with this
in mind. In the figure below, we show three
insertions in a spiral machine——three being

allows us to find
resonance below
square around

the minimum number that
an operating point with  no
fourth  order in the half-integer
the operating point.

Feseriion

FFAG WIith Insertion: Three-Fold Perlodicity

The FFAG in which the insertion 1is placed is
a copy of the first MURA spiral sector machine.
Because it is a spiral sector machine, the scaling

with radius involves a rotation, and thus orbits
of different energies entering the insertion
are not parallel. This means that the central
drift space is not quite dispersion-free. Perhaps
this could be remedied by wusing spiral magnets
in the insertion. (Equilibrium orbits for three
differing momenta are shown.)
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