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Introduction 

MARYLIE is a Fortran-language beam transport 
and tracking code developed at the University of 
Maryland. It employs algorithms based on a Lie 
algebraic formalism for charged particle trajectory 

calculationsl, and is designed to compute transfer 
maps for and trace rays through single or mltiple 
beam-line elements. This is done without the use of 
numerical integration or traditional matrix methods; 
all nonlinearities (including chromatic effects) 
through third (octupole) order are included. Thus, 
MARYLIE includes effects one order higher than those 
usually handled by existing matrix-based programs. 

Presently, the following beam-line elements are 
described by MARYLIE: 

drifts 

normal-entry and parallel-faced dipole 
bends 

fringe fields for dipoles 

hard-edged magnetic quadrupoles 

fringe fields for quadrupoles 

hard-edged magnetic sextupoles 

hard-edged magnetic octupoles 

hard-edged electrostatic octupoles 

axial rotations 

radio frequency bunchers 

user specified transfer map (through non- 
linear terms of degree 3) 

Particle transport calculations (ray traces) are 
carried out at speeds comparable to those of current 
matrix-based codes. 

Requirements on Transport Codes 

A beam transport or tracking code must compute 
and manipulate some representation of the transfer 
map describing particle trajectories through beam 
lines. Matrix codes, for example, do this by com- 
puting coefficients in the Taylor series expansion 
of the transfer function for a beam line. MARYLIE 
deals directly with the nonlinear transfer map it- 
self; it computes the following approximate repre- 
sentation for the transfer map, 

M = exp(:f*:) exp(:f3:) exp(:fq:) . (1) 

More specifically, a beam transport code must 
meei three requirements. First, it must be able to 
compute transfer maps for individual beam-line 
elements. Secondly, it must be capable of combining 
maps for a collection of elements to yield a single 
map for an entire beam line. Finally, a code must 

be able to compute the effect of such maps on points 
in the phase space describing the beam (i.e., it 
must "trace rays"). These requirements specify, in 
a natural fashion, the structure employed by 
MAFXLIE. 

Structure of MARYLIE 

MARYLIE employs a modular structure. Each 
"module" (generally, a Fortran subroutine) is de- 
signed to meet (or assist in meeting) one or more of 
the above requirements. Overall control within the 
program is governed by a "main" code which calls 
subroutines to perform various operations. 

The lowest order part of any transfer map is 
described by the factor exp(:fz:). In MARYLIE (as 

in matrix codes) this portion is represented by a 
real 6x6 matrix. The nonlinear behavior of a trans- 
fer map is specified (through third order) by the 
polynomials f3 and fq* The coefficients of the 

various monomials occurring in a polynomial are 
stored at addresses within a linear array using an 

algorithm given by Giorgilli*. Because a transfer 
map is completely specified by its generators f 

1 n' 
this method of representation provides a unique 
description of any transfer map. 

When parameters for desired individual.elements 
are input into MARYLT.E, a set of “library” sub- 
routines is called. Expressions for the coeffi- 
cients of the f,'s [and for the matrix representa- 

tion of exp(:f2:)] are programmed into a subroutine 

for each type of element. Arrays containing these 
coefficients for individual elements are computed 
and stored, thereby providing the required represen- 
tation for the transfer map of each element in a 
beam line. 

A set of "array manipulation" subroutines is 
used to combine maps for a collection of beam-line 
elements in order to produce a single net map for a 
complete beam line. Necessary manipulations include 
taking matrix products of the lowest order portions 
of the maps, as well as computing various Poisson 
brackets of the polynomials generating the nonlinear 
portions. These subroutines employ algorithms which 
take advantage of the Lie group structure of the set 
of transfer maps: they simply evaluate the "group 
product" for pairs of transfer maps. 

Finally, another set of subroutines performs 
the manipulations necessary to compute the effect on 
a particle of transit through a beam line. The be- 
havior of a particle is completely specified by the 
six canonical variables employed in Hamilton's 
equations for trajectories within the beam line. An 
array (x,p ,y,py,T,PT) containing numerical values 
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for each of these variables (two transverse coordi- 
nate and momentum components, an arrival time devia- 
tion, and a deviation from design energy) is read 
in, and transformed (by the transfer map) into an 
image array which is read out. The output display 
separately tabulates the contribution to the image 
from the lowest order terms and from each order of 
nonlinearity. If desired, the coefficients of the 
polynomials f3 and f4, and the second-order and 

third-order transfer matrices may also be listed. 

Computer Requirements and Performance 

MARYLIE has been installed on the University of 
Maryland UNIVAC 1100/82 and on a CDC-7600 at the Los 
Alamos National Laboratory. We find that, for 
initial testing purposes, third-order calculations 
often demand the availability of 10 to 15 signifi- 
cant digits for each dynamical variable. Conse- 
quently, double precision has been employed on the 
UNIVAC machine (which uses a 36-bit word). This 
provides 16 digit precision. The ho-bit word used 
by the CDC machine provides adequate accuracy (14 
digits) when operated in the single precision mode. 

Time requirements differ for each machine (with 
the CDC being the faster). The UNIVAC requires ap- 
proximately 125 msec/element when computing and com- 
bining transfer maps for multiple-element beam 
lines. Ray traces are performed at a rate of appro- 
ximately 15 msec/trace. CDC times are substantially 
shorter. In either case, the operation times in- 
volved are much less than those required for 
numerical integrators, and are indeed comparable to 
those required for less precise (second-order) 
matrix calculations. 

The use of the Lie algebraic formalism also 
allows the construction of a code with minimal 
memory requirements. To represent a single transfer 
map requires only the storage of one 6x6 matrix and 
one 182 element linear array (containing the 182 co- 
efficients of monomials in f3 and f4). This is to 

be contrasted to the memory that would be required 
to store the several hundred matrix elements neces- 
sary for each beam-line element were one to try to 
implement a third-order matrix-based code. 

Tests of NARYLIE 

We have employed three types of tests to verify 
the accuracy of NARYLIE. First, we have compared 
the analytical expressions on which it is based to 
those yielded by the matrix formalism on which 

TRANSPORT is based.3 These expressions agree, in- 
dicating that MARYLIE is based on correct algorithms 
(at least through second order). 

Secondly, we have performed a variety of checks 
on the code to ensure that its "library" and "array 
manipulation" subroutines are self-consistent. 
Specifically, observe that the generators f for a 

n 
transfer map of a beam-line element are in general 
highly nonlinear functions of the element's length. 
A sensitive test of both the library and array mani- 
pulation routines is thus provided if we combine the 
transfer map for two identical elements of a fixed 
length, and compare the results to the map for an 
element of the same type, with doubled length. The 
results should agree; we find that they do, to with- 
in the round off error of the computer. 
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A variation on this test is made by computing 
the transfer map for a beam line. and combining it 
with the map for the "mirror image" beam line with 
negative lengths. The result should be the identity 
map. We find this is the case, to within computer 
round off error. 

The final test we have employed is to compare 
the output of mARYLIE with that from numerical inte- 
gration programs. We observe that NARYLIE 
accurately reproduces the results of numerical inte- 
gration; all differences are found to be of fourth 
or higher order in the initial conditions. These 
results lead us to conclude that MARYLIE is per- 
forming properly as a third-order ray-trace program. 

Tracking with MARYLIE 

As described so far, MARYLIE may be used to re- 
late incoming and outgoing values of the quantities 
(x,px,y,py,T,PT) for a general beam line. In the 

case that the beam line closes on itself, i.e. the 
case of a "circular" machine, NARYLIE can, in prin- 
ciple, be used to compute chromaticities and non- 
linear corrections to the usual lattice functions. 
All this information is contained in the polynomials 
f3 and f4. 

Because of its high speed, it is also attrac- 
tive to consider using MARYLIE to compute the effect 
of a large number of turns in a circular machine. 
As it stands, the Lie algebraic representation (1) 
gives a transfer map which is exactly symplectic. 
For computational simplicity, this symplectic 
feature is not completely utilized at present. 
Currently, the action of M on the general initial 
condition (~,px,y,p~,T,PT) is expanded in a power 

series and all terms beyond degree 4 are discarded. 
The expansion is correct through terms of degree 3 
since NARYLIE is a third-order code, and some terms 
of degree 4 are retained in order to satisfy the 
symplectic condition through degree 4. 

However, with only a slight increase in compu- 
tation time, it now appears to be possible to 
evaluate the effect of M on a general initial con- 
dition in such a way that the result is correct 

-through degree 3, as before, but symplectic to all 
degrees. 

-- 
Consequently, one can use all that is 

known about the transfer map for a circular machine, 
and, at the same time compute the effect of a large 
number of turns while maintaining the symplectic 
condition exactly. This is an improvement over 
current tracking methods which, although completely 
symplectic, simply approximate the transfer map by 
impulsive kicks. 

It is also worth noting that, rather than 
iterating the transfer. map by repeated single passes 
through a lattice (as is done with current tracking 
codes), MARYLIE may be used directly to square the 
transfer map repeatedly to produce very high powers. 
That is, the sequence 

M,M*, ,M4,M8, ~16, . . . 

can be produced. Thus, for example, the transfer 
map for 1024 turns can be produced in log2 (1024) = 

10 operations (using about 125 msec of UNIVAC time 

per operation), rather than in the * 10 3 * iterations 
required by usual methods. Evidently, the execution 
time to compute the map for N turns increases only 
as log2 (N). It is believed that this procedure may 



2444 

be useful in cases where the transfer map is only 
slightly nonlinear. 

The method for evaluating the transfer map 
while maintaining the symplectic condition to all 

orders, and the utility of computing MN by succes- 
sive squaring, are still under study and will be re- 
ported upon elsewhere. 

Conclusion 

Because of their high speed and low storage re- 
quirements, Lie algebraic methods are an efficient 
means of computing charged particle beam transport. 
The polynomials employed to generate the transfer 
map give a complete and succinct description of the 
nonlinear properties of a beam line. In the case of 
a circular machine, one can extract from these 
polynomials all desired information about nonlinear 
orbit properties including chromaticities and cor- 
rections to lattice functions. 

At the same time, it is possible to compute 
high powers of a map with relatively little effort, 
and it appears to be possible, with only a slight 
increase in computer time, to maintain the 
symplectic condition exactly. Thus, Lie algebraic 
methods also appear to be well suited to particle 
tracking for a large number of turns. 
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