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For an accelerator lattice containing non-linear 
elements, Tarticle amplitudes outside a “dynamic 
aperture” are unstable. In this paper an analytic 
procedure for estimating this aperture not depending 
on resonance assumptions is described. The amplitude 
x(N) after N iterations is expanded in powers of the 
initial am?iitude x . Low order coefficients are 
obtained using the Symbolic algebraic manipulation 
program REDUCE. For intermediate values of N (e.g., 
100) these terms give an asymptotic description which, 
by particle tracking, is shovn to be valid. This leads 
to an estimate of the dynamic aperture and to its 
possible enlargement. 

General Method 

The storage ring modelled will consist of long 
purely linear sections and thin non-linear elements. 
We will use normalized coordinates (1) so that the 
linear elements will be totally characterized by the 
betatron phase advance through them. 

x=X/S , u=dx/d$=U<+cl)(/: (11 

where X and U are the physical position and slope, and 
c= 31/2 and a= -2B’. Each non-linear element will be 
labelled from 0 to N-l. Then the linear transfer 
matrix for one transverse plane for the 
to n is just 

passage from m 

R(n-m) = 
cos (Pm) , sin CO,,) 

-sin(bm) ,Cos(4m) 

tihere &,, is the betatron phase advance 
section. A non-linear element, n, will 
by 

(21 

through that 
be described 

xi(out) = xi(in) + T(n)ijkxj (in)xk(in) . (3) 

The matrix elements T(n)ijk are SyIIImetriC in the last 
two indices. 

After passing through N cells, beginning at the 
face of the 0 non-linear element and ending at the 
face of the N non-linear element, the phase space 
vector xi(N) can be written as a power series of the 
initial conditions, xi(O) 

x.(N) = ‘f T’“’ 1 ijk...l 1 x. (0)Xj (0)Xk(O). . .x1(O) . (41 
n=l 

The coefficients TLnL $ are svmmetric in all but 
first index. The :!rs+. ew coefficients,are listed 

the 

below 

Pa) 

T(2) = Ni’ R. 
Ilk n=O l@ 

(N-n)T(n) aBvRBj (n) Rvk (n) 

,-. N-I n2-1 
Ti'!Ll =',Jzl ,,fyo Ria(N-n:)T(n2)a3vRgj-("2) 

L 

x Ryg(n2-n1!T(l~1) 5E~R~k(~1~)RL~(nl) 

’ (&jj “i;k%l’%k%j 11 J 1 kk 1~ &- +67 6-- k--.)/3 . (5c) 

In the above form, eqs. (5) are sufficiently general to 
describe a lattice of arbitrary complexity. They can 
be regarded as a logical elaboration of standard 
lattice theorv going beyond the lowest non-linear order 
of approximation. 

One Sextupole Family 

The one sextupole family lattice we will use has 
sextupoles of strength m (in normalized units) 
separated in betatron phase by an amount, A. The 
matrix element for silch a sextupole is 

T 2 
211 

=mx , otherwise Tii k = 0 
i 

(6) 

Moreover, the value of m can be scaled into the 
variable Xi by xi + xi/m. Any non-zero m will be 
scaled into the xi this way and henceforward m= 1. 

For ease of presentation, Xi(O) = (x0,0). Thus(il] 

becomes 

g;$;rStAy; ;rd;;;;e;;z $“F ;~;;fy;;:;;;e;e;;~;g 
simplification, is 

x-1 n2-1 

T2 
C3)=2 1 l 

n2=1 nl=O 
cos (O-n2A)cos (n2A)sin((n2-nl)A) 

cos2 (n,A) 18) 

Here @ is the total phase advance through the N cells. 
First REDUCE can be made to expand products of trig 
functions appearing in each summation into a series of 
their Fourier components. Then it can perform the 
indicated summations by making appropriate substitu- 
tions. Sample substitutions are listed in the 
appendix. Finally, REDUCE can give the i=l 
coefficients by taking a derivative with respect to @ 
and multiplying by -1 each i=2 coefficient. The 
results of these manipulations are fairly long and 
will not be listed. Table I lists a comparison of the 

31 
found with the coefficients up to and including 
and tracking for various N’s and A. 

The discrepancy between the analytic solution and 
the tracking solution gets worse for larger N because 
~H~e;i~~~e~c~~~ff~~fe~i5)h~~c~ ;;;o;gp;e:;pene;nce. 

depends linearly on N as 

(N-l)cos(@)cos(.A/2)(1+4cos(A))/16/sin(3A/?) . (91 

Such a term arises because after a summation over one 
index terms can remain which are independent of other 
indices. As in (9), after the nl summation is done 
there will be a piece left with no n2 dependence. 
Hence, when the n2 sum is done we get the factor N-l. 

lation be a ior persists in higher orders 
%z. ca?gj = 0 (N) Tlsy = 0 (N2) etc. 
though the exact i dependence if T(M) 

Thus, even 
for M large has 
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Empirically K increases rapidly from a nominal value 
of about 2 near the dynamic aperture determined from 
tracking. Turning this around the solution of (11) 
with K=2 yields an estimate of the dynamic aperture 
from the truncated behavior as shown in Fig. 2. This 
prediction depends on the arbitrarily chosen value of 
K but the sensitivity is slight and decreases as 
higher orders are included. For example, increasing K 
by a factor of 100 increases the estimate by a factor 
of perhaps 3. 

Table I 

Comparison of xtrackand~4th with x0= .l, uO= 0 

3 -9.6135D-02 -9,6144D-02 
5 5.7579D-02 5.7606D-‘02 

10 -3.1054D-02 -3.103iD-02 
50 -9.5195D-02 -9.6497D-02 

100 9.9098D-02 l.O206D-01 
1000 1.1435D-03 3.1065D-01 

A=O.790553216r 

3 4.3466D-02 4.3461D-02 
5 9.7897D-02 9.79OlD-02 

10 9.3357D-02 9.33710-02 
50 -4.2973D-01 -.4.2875D-01 

100 -9.57000-02 -9.6685D-02 
1000 9.6744D-02 1.2158D-01 

not been determined, it is reasonable to rewrite the 
series (7) as 

xi(N)= i b(x . k=O k O’l)’ k (10) 

where L depends on N. It is to be understood that 
bk(Xg,i), k>O, contains all such offending terms. For 
example, bl will contain (9). 

With the aim of estimating the “dynamic aperture” 
a modified Courant-Snyder “invariant”, E(N), is 
defined by 

E(N) = x2(N) + u2 (N) . 

Naturally, the non-linear elements cause 8 to be not 
invariant, as Fig. 1 shows. In fact, for large enough 
initial conditions, e(N) will grow uncontrollably with 
increasing N. Our goal is to find a way to estimate 
the largest starting point, x0, such that E(N), though 
it may fluctuate, will remain stable. This point is 
defined to be the dynamic aperture. One method of 
finding the dynamic aperture is particle tracking. 
Another is to use the truncation scheme described 
below. 

In the stable region, as N becomes large the 
bk’s, for k>O, must become very small or else (10) 
would blow up like some power of N. This leads to the 
asymptotic argument that a truncated version x *i CNl , 
consisting only of the zeroth term in (IO), would be a 
qualitatively good approximation to Xi(N). Comparing 
an E formed with XTi and E from tracking, as in 
Fig. 1, it can be seen that in the stable region this 
is a valid assumption; the average values of E for 
both cases are quite close. After truncation 
is no possibility of uncontrolled growth in E * 

there 
, since 

it is a finite Fourier series. Nevertheless, a kind 
of beating occurs which causes ~~ to oscillate over a 
progressively larger range as the limit of stability 
is exceeded. This tendency can be exploited to give a 
quantitative estimate. 

The maximum value eTmaX of ET grows very fast as 
the starting point exceeds the dynamic aperture. The 
growth rate can be quantified by a factor K by which 
eTmay , is larger than its initial value. 

ET max = Ka(0) = lcvo2 . (11) 
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Fig. 1 E from tracking and truncation 
top ~(0)=.36, bottom ~(0)=.64, A=O.340460692n 

t 4TH ORDER ESTIMRTES 

Fig. 2 Dynamic aperture for one sextupole family, 
Ill=1 

Finally a word about the resonances shown in 
Fig. 2. If the analytic gues;z~~o~“:‘~r~it:h~~l~n~~ 
to second order, i.e., only T 
the third integer is present. To third order the . 
resonance at 2r/4 appears. The 2-r/5 resonance comes 
from the fourth order terms. 

Two or More Sextupole Families 

They 
Like 

Suppose there are Nf families of sextupoles. 
are arranged sequentially as ABC...EABC...E... 
sextupoles are A apart in phase. Between the 

different ones in a cell the separation in phase is 
defined to be A + B Al, A-tC A2, A+D A3,..., 

A-;ErANf - 1. This calculation is done only up to third 
. Once again the strength of the initial 

sextupole has been scaled into the variable Xi, to 
make mA = 1. 

Specializing to two families, a practical case is 
when mB= -2, which corresponds to a chromatically 
compensated FODO lattice1 whose eta functions are in 
the ratio 2:l. There are three cases presented in 
Fig. 3. The factor P is the percentage of the total 
phase advance per cell from A to B, that is Al= PO. 
There seems to be some advantage to having most of the 
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phase advance after sextupole 8. 
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Fig. 3 Dynamic aperture for two sextupole families 
hl’PL! (o tracking, + 3rd order prediction) 

Insertions With One Sextupole Family 

An insertion (rf straight, mini-B, etc.) is a 
linear region characterized by the phase advance, 0, 
through it. One “turn” will consist of N cells and a 
linear insertion. A cell is a sextupole and a linear 
part with phase advance, i?. A value of Ed,,, is 
obtained as above. Unfortunately, the predictions are 
done to second order only because no unambiguous way 

has been found to truncate the third order term. 
However, as Fig. 4 shows, second order predictions and 
tracking agree qualitatively. In this figure the 
numbers plotted specify 4 as a multiple of n/10. 
Although the results are choppy, the trend indg,ic:es 
that $= 0 is an envelope for the $#O cases. 
with p being a multiple of 2~r, the aperture seems to 
be its largest. 
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Fig. 4 Dynamic aperture over a range of O’s for 
several insertions phases, Cp = #!ll/lO) . 

Conclusion 

Using the symbolic algebraic manipulation program 
REDUCE, a prescription has been given for estimating 
the dynamic aperture of a non-linear lattice from the 
leading terms of a poser series expansion. Reasonable 
agreement with apertures determined by tracking has 
been obtained with more detail in the form of resonant 
features being observable as the order of truncation 
is increased. Tentative recommendations for workable 
tunes and phase advances across insertions can be 
inferred from the figures. 

Apuendix 

A sample summation subftitution: 

N-l 
1 cos(x+ny)=cos(x+(N+k-l)y/Z) v (12)2 

n=k 

N-l w-1 

C c cos (x+nly+n2z)=- 
n2=1 nl=O 

x sin~~f(~~$2) - sin(x-y/2+N(y+z)/2) 

x sin(CN-11 (Y+z)/~) ,2,sin(y,2) 
sin((y+z)/Z) 1 

(13) 
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