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Abstract 

Simulations of weak-strong p; collisions with a 
periodic tune modulation show the poaaiblity of beam 
blowup at sufficiently strong modulation amplitudes. 
This beam blowup is associated with the appearance of 
nonrepeatable "chaotic" trajectories and occur3 when 
low order resonances are crossed by the modulation. 
In this paper we also report results of an 
investigation of the dependence of this blowup upon 
the modulation frequency, with the modulation 
amplitude fixed. It is determined that a threshold 
freqency exists, modulations at frequencies greater 
than the threshold do not lead to beam blowup. 

Simulation Procedure 

In pqoton-antiproton (pp) collisions in the 
"Tevatron" particle trajectories will be affected by 
the bigly nonlinear force of the "beam-beam" 
interaction the electromagnetic force field of the 
opposite beam in the colliaiona. The trajectories 
between collisions will be subject to tune modulation 
from turn to turn through sources such as power 
SUPPlY ripple or aynchrotron oacillationa with 
uncorrected chromaticity. Previous investigations of 
the beam-beam interaction by the present authors have 
considered a constant "beam-beam" interaction form 
and particle transport. In this paper we add the 
complication of tune modulation and investigate its 
effects. Without this modulation a remarkable beam 
stability has been found.' 

We approximate particle circulation around the 
accelerator ring as the product of two 
transformations: a linear transport around the 
storage ring followed by a nonlinear beam-beam "kick" 
at the interaction area. 

Transport around the ring can be re presented by 
a 2x2 matrix for both transverse (x and y) 
dimensions. 
are 

In this linear t;;ansprt x and y motion 
decoupled. v,, v , are the usual 

Courant-Synder tunes an8 be&troX-functions. The 
product of these transformations is equivalent to 
integration of the equation of motion: 

4;rcv, 
X " + Kx(s)x : - - 

Bx 
Fx(x,y) xbpW (1) 

and similarly for y, where a, the distance alon 
storage ring, is the independent variable and f 

the 

is a periodic delta-function. 
p(s) 

In the present report we choose parameters which 
approximate the conditions' in the Tevatron: 
*Llx = "uy = 0.01, Bx I By : 2m and we choose 

Fx=F = 
,-e-(X*+y*v2u* 

Y (2) 
(X*+y*)/Zd 

*Operated by Universities Research Associated Inc. 
under contract with the Department of Energy. 
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with u = 0.0816 mm. This is the nonlinear force due 
to a round, gausaian charge distribution. This does 
not change from turn to turn which mean3 that we u3e 
the "weak-strong" approximation where the "strong" 
beam is unaffected by the weak beam. 

To simulate tune modulation, the tunes vx and u 
are changed from turn to turn following Y 

V =V +a sin 0 t 
X X X X (3) 

0 

with a similar equation for V . We have used o I 'J) 
in all cases, which is expected for moat reasznablg 
sources of tune modulation, and we have considered 
two possible relative phases: 

[a 
Y 

= ax labelled ++I and [a q -ax labelled +-] 
Y (4) 

The magnitudes of a and a are 
value: 

chosen equal. We 
have chosen of a' between 0.001 and 0.01 in 
agreement with expected vafues. We have first chosen 
a frequency precisely one thousandth C.001) of the 
collision frequency. Since the Tevatron collision 
frequency is' 50 kHz, the modulation frequency is 50 
Hz, quite close to expected power supply modulation 
(60 Hz) as well as the aynchrotron motion frequency. 
The modulation is chosen as a precise fraction of the 
collision frequency to simplify computation; the 
linear matrix can be calculated initially for each of 
the 1000 possible value3 and stored. This eliminates 
the necessity of recalculating the matrix on each 
turn. 

In the simulations a set of 100 initial particle 
positions are generated randomly within a gaussian 
distribution in the 4-D phase space (x,x' - ,Y,Y 1. 
These are transported through many turns with, tunes 
modulated following equation (3). Every 2000 turns 
the rms emittancea X,Y, and R are calculated using: 

x = 6/<(x-x)*> <(x--ii')'> 
I 

Y = 6/:(y-7,'> <(y--y')'> 

R q JX2+Y2 

(5) 

In these simulations 6 million turns (corresponding 
to 2 minutes Tevatron time) are calculated in each 
case, and 3000 emittance values are generated and 
analyzed statistically. "Doubling" times for X,Y and 
R emittance are obtained from the slopes of the best 
straight line fits for X, Y and R a3 function3 of 
time from t = 0, using rms values calculated every 
2000 turns. Statistical errors are also included in 
the analysis. 

Simulations with Constant Modulation 
Frequency 

In this section we describe the results for 
those cases where the amplitude of the modulation was 
varied but the period was taken constant at 1000 
turns. 
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For all tune modulation simulations we have 
chosen initial tunes at v = .3439, V = .1772, 
Av : .Ol. These are the parameters of C%eY C of 
Reference 2, which is a case chosen in tune region 
free of resonances lower than ninth order and showed 
the greatest stability in the long-time simulations. 
The addition of tune modulation permits the 
appearance of low order resonances in combination 
with the modulation. Figure 1 shows the "tune-space" 
near the Case C tunes, and one finds third, sixth and 
eight order resonances accessible by tune modulation. 
We have considered 13 separate modulation cases: 

1. a = 0 (no modulation) Case C of Reference 2. 

2. (++) modulation with a = a = .OOl, .003, 
.005, .OO?, .009, .Ol. x y 

3. (+-I modulation with a q -a = .OOl, .003, 
.004, .005, .007, .Ol. x Y 

In the (++) simulations we saw no significant 
changes in rms emittances for a < .009. However, for 
a= .Ol some statistically significant changes 
appear. There is a strong anticorrelation between 
changes in x and y emittances but the changes are 1% 
after 6 million turns, and represent "doubling times" 
of >O.l days, only a few standard deviations from 
zero change. 

For the (+-) simulations more dramatic changes 
OCCUr-. For a < .003 no statistically significant 
changes occur but for a > .004 there is a fast blowup 
of the beam emittances, witn doubling times of 
fractions of a minute rather than days. The blowup 
is evident within 200,000 turns of particle motion 
and continues throughout the simulations. 

Our conclusion is that beam blowup can occur 
when there is tune modulation and beam-beam 
interaction, if the modulation is of adequate 
amplitude. 

Simulations with Constant Modulation 
Amplitude -- 

We have fixed the amplitudes a = a = .005, a 
case which shows modulation blow%p For N = 1000 
revolutions periqd, and varied the period from N = 8 
turns, to N = 10 turns. Fig. 1 shows the modulation 
tune space showing the low order resonances. 

For N < 100 no significant increase in total 
beam emittances are observed; doubling times are many 
hours. For N = 200 significant increases appear and 
for N > 400 fast beam blowup occurs, with doubling 
times less than a minute. The results are shown in 
Fig. 2. 

Reversibility Tests and Chaotic Trajectories 

Our basic test of computional accuracy is a 
reverseability test. In these tests initial particle 
positions are transported forward N turns, the 
transport is reversed and the trajectories are 
returned. 
compared. 

Forward and return particle positions arq 
As we discussed in another paper 

"chaotic" trajectories diverge exponentially in this 
test and it is a useful tool for distinguishing them. 

In these stests all 100 trajectories are 
transported 10 turns forward and returned. Most 
trajectories develop errors of order lo-" in 
agreement -with the expected error for non-chaotic 
trajectories. The results of the test are: 

i) For constant period N = 1000, no large error 
trajectories appear for the (++) cases until the 
largest (.Ol) where 3-61 are large error. 

ii) For constant period N = 1000 (+-I case there 
are no chaotic trajectories for a < 0.004. For 
a = .004, 10% of the particles are chaotic and 
for a = .005, about 50%. The number of chaotic 
trajectories appears nearly constant for 
a > 0.005. 

iii) When the modulation amplitude was kept constant 
(at 0.005) and the frequency varied, no chaotic 
trajectories were found for N < 16. Chaotic 
trajectories appear at N-32. Their number 
increase with N up to about of 50% at N _ 2000. 

There is a strong correlation between beam 
blow-up and the appearance of chaotic trajectories. 

Tune Modulation, Chaotic Trajectories, 
Resonances and Beam Blowup 

As mentioned above, the addition of tune 
modulations permits the appearance of low order 
resonances. In Figure 1 we show the tune diagram for 
(+-I -005, a case with beam blowup and -40 chaotic 
trajectories. The tune spread of the beam 
(Au = Au = .Ol) is outlined at the center (a = 0) 
andXat th$ extremes of tune modulation, showing the 
extent of modulation. Low order resonances are 
indicated by darkened lines. 

The appearance of chaotic trajectories in the 
(+-I simulations is definitely correlated with the 
inclusion of the third and sixth order resonances 
c-v + 2" : 0, 4" - 2v = 1). This can be made more 
def?nite %y considgring the progression of (+-) cases 
a = .003, .004 and .005. At .003 the resonances 
barely intersect the edges of the tune modulation and 
do not effect the particle motion; there is no beam 
blow-up. At .004 the resonances do intersect the 
beam for large amplitude particle motion; we find 10% 
chaotic trajectories and beam blow-up. At a = .005 
the resonance line intersects the center of the tune 
square at the extremes of the tune modulation; 
~40-508 of the trajectories are chaotic. 

In Figure 3 we show particle tunes averaged over 
the first thousand turns for the +.005 case. The 
tunes are concentrated near the diagonal as is 
expected from basic considerations. Investigations 
of particle trajectories find that they can be 
categorized into three distinct groups: 

1. "Non-chaotic" (repeatable) trajectories 
which do not change their mean amplitudes 
substantially in long-time simulations. (fl) 

2. "Chaotic" trajectories which may undergo 
some change in mean amplitudes but do not 
diverge to large amplitudes. (C) 

3. "Chaotic" trajectories which do diverge to 
large amplitude. (F) 

In Figure 3 we have identified these three 
separate types and find that they occupy distinct 
regions in tune space. The largest amplitude 
particles are predominately chaotic and divergent. 
Intermediate amplitudes are chaotic but not 
divergent. Smaller amplitudes are non-chaotic. This 
separation is in agreement with an intuitive picture 
in which chaotic trajectories are caused by sweeping 
of a low order resonance through the beam, and only 
those trajectories which reach an amplitude swept by 



the resonance can be chaotic. This PiCt'We iS 

confirmed by consideration of the (+-) .004 case. 
The nine chaotic, divergent trajectories are the 
largest amplitude trajectories and the lower 
amplitude tune modulation should only "sweep" through 
the largest amplitude particles. These largest 
amplitude particles are also labeled in Figure 3. (0) 

In Fig. Q we show the same distribution3 
million turns later. Some particles have been pushed 
to large amplitude. These particles are those 
initially at large amplitude and are those that are 
chaotic and "grow". This is in agreement with 
beam-beam observations in the CERN SPS pp collider. 

We have also confirmed the hypothesis that tune 
modulation is necessary for the appearance of 
chaotic, divergent trajectories. Six million turn 
simulations with &J = .Ol at the center (v = .3439, 

of 'the tune 
&d~l,~~~~) T:" zt.3$; y= e$";zeznd (vx = .3389, 
u =. 1822; wfthout m:duyation show no chaotic 
tyajectories and no beam blow-up even though the 
extremes do contain low order resonances. 

For the (++) simulations only the largest 
amplitude case shows evidence of chaotic trajectories 
and it shows no large beam blow-up. In Figure 5 we 
show the tune diagram for the .Ol modulation case and 
this shows a few low order resonances within the 
modulation amplitude. Investigation of particle 
amplitudes indicates that the sixth and third order 
resonances in the lower right of the tune diagram are 
probably associated with these chaotic trajectories. 
Only largest amplitude particles which could reach 
these resonances are chaotic. Since only a few 
particles can reach these resonances there is no beam 
blow-up in this case. 

Conclusions 

Simulations of the beam-beam interaction with 
tune modulation find that beam blow-up can occur if 
the modulation sweeps the beam through a low order 
resonance. Modulations > .Ol would be forbidden by 
this criterion with Au to avoid regions with low 
order resonances. No beam blow-up should occur at 
much lower amplitude modulations. 
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