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Abstract --- 

The results of long time computer simulal;ion 
searches for "Arnold Diffusion" in beam-beam 
interactions at pp collider parameters are presented. 
No evidence of significant diffusion is found, 
consistent with beam storage for many days without 
"blow-up". "Chaotic" motion is observed in 2-D 
simulations at pp parameters by use of reversability 
tests, and Lyapunov exponents for the chaotic notion 
are measured. This motion appears at 'he 
intersection3 of low-order resonances. Chaotic 
motion in 1-D simulations and in simulations with 
tune modulation can also occur. The conditions for 
the appearance of chaotic motion are explored as well 
as its relationship with "beam blow-u?". 

Introduction -- 

In proton-antiproton (pp) 'storage ring machines, 
p and 5 bunches collide with each other, providing 
high luminosity, high energy interactions. In these 
collision3 particle motions in the colliding bunches 
are perturbed by the electromagnetic field of the 
opposite bunch, which provides the nonlinear 
"beam-beam" interaction. This nonlinear force can 
cause beam loss or "blow-up" reducing luminosity. PP 
colliders are particularly vulnerable to this 
instability since the difficulty of accumulating 5's 
necessitates that the beams must be stored for long 
periods (- 1 day) without significant beam "blow-up" 
in the collider. 

Our simulat&ons spp~oximate partCcle motion in 
the "Tevatron" , and track milltons of turns of 
particle motion apound :he ring with a nonlinear 
beam-beam "kick" on each tnrn. 

Motion around the ring from "kick" to "tick" is 
simulated by multiplying particle coordinates (x, x', 
y, y'! by a linear 4x4 "Courant-Snyder" matrix3 
determined 
3 , 
mXatri v 

by the C-S parameters: vx, v ("tune"); 

"X? a . x and y motion are uncoupl. 2i d in the 
and y, =a =o and B =@ -2 m are chosen to fit 

"Tevatron" valces? Note tgaty only the fractional 
parts of the C-S tunes are significant in the matrix; 
integer parts are therefore ignored in this paper. 

The beam-beam interaction is si,mulaf;ed by adding 
a nonlinear kick to the velocity (x , y ) of the form 
x'+ x'+Fx(x,y), where 

-I+nAv (1 _ escx2 

F =B,-- 

+y%2c2)x 

X (x" +yL )72d - 

av is the "linear tune shift", B is the C-S 
parameter and the function is the b&n-beam "kick" 
due to a round gaussian "strong" beam with rms radius 
0 (a=.0816 mm in the Tevatron). The funct:on is 
unchanged throughout the simulations, which 
approximates collisions of a weak p-beam with an 

--- 
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unaffected "strong" p-beam. The parameters of the 
simulations closely approximate conditions in a p-p 
collider: AV r: .Ol "zero-length", "weak-strong" 2D 
collisions of round beams, with no synchrotron 
radiation effects. 

Long Ttme Slsulation Sea.-ch for "Arnold Diffusion" __I__------__--- ___--__----- 

Nonlinear dynamics research has noted that 20 
motion in a nonlinear field can develop excursions to 
large amplitude at large time scales, by a process 
such as "Arnold Diffusion" in which particle 
trajectories follow stochastic motion along 
intersecting 1 resonances . To determine whether 
motion occurs at $p collider parzaeters we 
undertaken long time scale simulations with 
accuracy and searched for signs of instability 
In RMS beam size and in indivldua!. trajectories. 

many 
such 
have 
high 
both 

High accuracy is useful in separating an 
intrinsic instability of the nonlinear dynamics from 
the noise-like effects of inadequate accuracy. We 
use CDC double precision to obtain 28 decimal place 
accuracy in a single turn calculation. Long time 
s',mulation accuracy Is checked by following 
individual particle trajectory forward in time for 
many turns and then reversing the motion, comparing 
forward and return particle coordinates. Figure 1 
shows the results of such "reversability tests" for 
sample trajectories of case B (see below) in 60 
million turns forward and return (120 million total! 
tests. After 120 nillion turns, initial and final 
positions agree to approx. 14 decimal places. 
Similar results anrobtained Ln all our simulations 
for normal "non-chaotic" trajectories (see below), 
and this indicates the scale of accumulated error in 
our simulations. 

Long time simulations of up to 120 million tarns 
have been obtained. This corresponds to about 40 
minutes of Tevatron beam storage (20~s period), a 
significant fraction of the 5p storage cycle (several 
hours). In these cases the trajectories from 100 

randomly chosen initial conditions are followed and 
RMS emitiances & and & as a function. of tfme a?e 
calculated. Fits of ?hese values to straight lines 
are used to extrapolate "doubling times" for E x' Fy* 

Three cases have been explored in th;s ion 
& time 

mode, as described in more detail -in references : 

Case A (Vx=.2b15, Wy=.2U5, AV=.Ol): 

This is a case with V'=V wi',h tune spread covering 
the resonance u=1/4. ifftir 123 million turns no 
statistically significant changes Ln RMS emittancez 
are observable with extrapolated "doubling time" of 
of -200 days corresponding to changes of emittance of 
~0.01% over the full simulation time. The motion is 
completely stable both in tndivcdual particle 
trajectories and in the beam as a whole. 

The spherical symmetry (v,=v , etc.) 
implies that the quantity pg=x'y-sax is a c~k~~~~ o! 
motion and the equations of motion' can be reduced to 
1D; therefore, no multidimensional l.nstabilCty can be 
expected. This agrees with the stability of the 
simulations, in spite of the low order resonances. 
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Case B (V z.245, \; z.12, ~v=.Ol): This case has 
'3 tv so thatXmotion i g truly 2D (unlike case A) and 
16~ grder (l/4, l/8) resonances within the tune 
spread. A 120 million turn simulation with 100 
particle trajectories has been completed in this 
case. No large scale instability is observable and 
RMS emittance changes of ~1% are observed, with 
extrapolated doubling times of z several days. 

However a systematic exchange of emittance 
between x and y motion of approx. 1% is observable 
and this is associated with the appearance of 
"chaotic" motion in some trajectories (see below:. 
This "chaotic" motion does not lead to significant 
increases in RMS beam sizes, and does not lead 
trajectories to larger amplitudes at pp time scales. 

case c (V,=.3439, v =.1772, bVZ.01): This iS a 

case and a 
lower %.E ads?: order. 

t ne spread free of resonances e 
A 60 million turn simulation 

shows RMS emittance change3 of S .OZ% with 
extrapolated doubling times of 2 100 days. No 
"chaotic" motion is observed and the case shows 
complete stability. 

We summarize the above simulations in the 
conclusion that the beam-beam interaction at pp 
colliders contains no intrinsic instability 
endangering useful luminosity within many hours of 
beam storage. 

The Appearance of Chaotic Motion in the Beam-Beam --------- -_--------__I- 
Interaction 

Repeatability test3 of some trajectories in case 
B show substantially different behavior from those of 
figure 1, and a typical case is shown in figure 2. 
These trajectories, which we label "chaotic", develop 
errors of order unity In -,30-100 thousand turns. The --- 
other “normal” trajectories have errors of order 
10-l' after 100 million turns. --- 

In "normal" trajectories, errors 6 grow as 
simple powers of the number of turns N 

ci 
F -6 

ON 

where fi is a single turn error size (lo-") and Y < 
2 in 8ur simulations. "Chaot'c" trajectory errors i 
grow exponentially 

& t 6 eaN 
0 

where, in case (B), a ? 10m3 is found empirically. 

T'he reversability test was applied to 500 
trajectories with initial conditions randomly chosen 
in the 4D gaussian phase space determined by 0. 75% 
are "normal" with small errors; 25% show exponential 
error growth with exponents ai, with ai ? .OOl; there 
are no intermediate cases. These "chaotic" 
trajectories are associated with the phase space 
region affected by the l/4, l/8 resonances. 

The results can be correlated with the 
developing concepts of nonlinear dynamics . The 
coefficient a. is identified as the “Lyapunov 
Exponent" of 'the trajectory and Its non-zero values 
indicate that %he transformation has non-zero 
"Kolmogorov Entropy", 
over the phase space of 

which is found by averaging ai 
the transformation T: 

h(T) = 0.75.0f0.25.a 2 2.5x10-4 

This entropy is significantly non-zero and in fact 
quite large in view of the "non-chaotic" appearance 
of the transformation. 

Dependence of Chaotic Motion on Tunes -___- 
(V-,W,) and Tune Spread V 

While 25% of trajector;es are chaotic in case 3, 
case A and C show no chaotic motion at all, which 
implies (1% chaotic motion. We have undertaken a 
systematic study of the dependence of chaotic motion 
on "tunes" and "tune spread" (U ,V ,AV). We find that 
chaotic motion occurs when thg txne spread contains 
the intersection of low order resonances. A 
resonance is determined by a relationship between the 
tunes: 

nV +mV 
X Y =P 

where n, m and p are integers. The order "fi" of the 
resonance is given by 

Q-In + m 
R = 2( nl+ m ) if m and/or n are odd I II 

if both n and m are even or 

for our round beam-beam force. 

The dependence of chaotic motion on resonance 
intersection is shown in figure 3. In each case the 
resonance intersection is placed in the center of the 
tune spread and 100 trajectories are tested for 
chaotic motion by a repeatability test. The results 
can be summarized: 

Intersections of 4th and 6th order 
resonances show large regions of chaotic 
motion (lo-30%). 

Intersections of 4th or 6th order with 8th 
order also show some chaotic motion (S5%). 

Higher order intersections show little or no 
chaotic motion (il%). 

Cases with wx=V (or V =V 2.5) show no 
chaotic notion. &is is p?obxbly due to a 
kinematic invariant (pe) associated with the 
symmetry of the motion which reduces the 
motion to 1D as in case A above'. 

Dependence on tune shift AV has also been 
explored with Av=.OO5, .Ol, .02. In these cases, the 
density of chaotic motion shows no dependence on tune 
shift. However the Lyapunov exponents ai are 
directly proportional to Av. 

The results correlate well with resonance theory 
since for the beam-beam interaction the resonance 
width does not depend on 0-d but the frequency of 
oscillations within the re3onance is directly 
proportional to av. We can thus correlate the density 
of chaotic motion with the area of resonance overlap 
and the Lyapunov exponents with unstable motion due 
to overlapping oscillations. We also note here that 
"chaotic" motion does not imply long-time 
instability. 0ur studies of case B show long-time 
stability even with large degrees of chaotic motion. 
We speculate that this limitation in amplitude 
change3 is due to our "round" beam-beam force; "flat" 
beams may show greater amplitude changes. 

We note that the repeatability test has been a 
very useful too1 in separating "chaotic" from 
non-chaotic motion in beam-beam simulations and has 
done this with very little ambiguity. 



Chaotic Motion in 1D Simulations _______ p-------- 

In the above 2D simulations, we see chaotic 
motion at the crossings of separate resonances. In 
1D motion such crossings do not occur. We have 
explored conditions for chaotic motion for 1D cases 
wiin reversaoillty tests. in wnicn ID motion is 
obtained by setting y-y ' identically to zero in the 
transformations described above. 

In 1D motion large chaotic regions (Z 10%) are 
found at large values of tune shift !Av?.15! where 
the motion can contain many low order resonances. 
For smaller tune shifts chaotic motion can occur near 
the separatrices of low order resonances but the 
total area occupied by the chaotic region is quite 
small. 

In figure 4 we show phase space trajectories in 
a case (~=.'5, Av=.O9) where Interference between a 
sixth order resonance and a higher order resonance 
can be seen in the motion. Chaotic motion does occur 
near the separatrix of the sixth order resonance, but 
this occupies only a small fraction of the total 
phase space. Chaotic motion with smaller nv is 
confined to much smaller areas even with low order 
resonances. 

Chaotic Motion with Tune Modulation pI---- _----_--- 

The tunes of the C-S transformation can be 
changed from turn to turn following 

Lx = ‘Jxo +a sin x e 

where a , Nx are the amplitude and period of the 
modulat!on. This can simulate modulations from power 
supply ripple and uncorrected ch6romaticity, etc. AS 
we describe in a separate paper , modulations of this 
type can lead to chaotic motion in both 2D and 1D 
simulations if the modulation crosses a low order 
resonance. Dnlike our 2D cases, this modulation can 
lead to amplitude instabiity and beam blow-up. 
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