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BEAM SIZE ENHANCEMENT DUE TO THE PRESENCE 
OF SEXTUPOLE MAGNETS IN A RING* 

S. KHEIFETS 
StanJord Linear Accelerator Center 

StanJord Univcraity, StanJord, California 9,/SOS 

A perturbation method’ using the Green’s function of the 
Fokker-Planck equation is applied to evaluate an enhancement 
of the vertical beam size of a bunch due to the presence in 
a storage ring of sextupolar magnetic fields. The size of the 
bunch is presented as the power series in sextupole strength 
parameter. 

Consider the beam size in function of the machine tune. 
The curve will correctly describe the size enhancement only if 
tune is not too close to a resonance. In immediate vicinity of 
the resonance the beam size will deviate from correct value, 
since here breaks the assumption put into the base of the cal- 
culation. Namely, the perturbed distribution function will de- 
viate strongly from its unperturbed value. The perturbation 
theory cannot be used near the resonance and other methods 
are needed to treat the problem.. On the other hand, far from 
resonance the assumption is valid and the met,hod gives an es- 
timate of the perturbed beam size. A numerical example of the 
beam enhancement due to the presence of sextupole magnets 
in PEP storage ring is presented. Discussion of this in more 
detail can be found in Ref. 2. 

To describe a particle motion in a storage ring we use the 
Courant-Snyder variables3 u,d (u’ z du/db) for the hori- 
zontal and u, 0 (v’ zz dv/dO) for the vertical planes respec- 
tively. The sudden change in the particle velocity by a pas- 
sage through a nonlinear magnet (‘kick’) in these variables is 
connected to the kick in variables z and y by the following 
relationship [cf. expressions (5.6) and (5.10) of Ref. 11: 

Fz (u, u) = v 6 Fz[4u), y(v)1 , and (1) 

Fy (u, v) = I- fi Fyl4flh Y(41 I (2) 
where Y and r are horizontal and vertical tunes of the machine 
correspondingly. 

For a sextupole Fz = S(J? - y2), Fy = -2Szy, where S is 
the integrated strength of the magnet. We get in the variables 
u, v: 

E, = v(S(‘)u2 - S(21v2) and (3) 

E, = -2~S(~luv , where (4) 

S(l) = S&2 and (5) 

s(2) = spy2py (‘3) 

The perturbed distribution function $ = $0 + $1 + &, 
where $1 and $2 are the first and the second order corrections 
for the distribution function, 1 allows us to calculate the per- 
turbed vertical beam emittance E,: 

EY = / dV $(V) (I? + vi2/r2)/2 (7) 

Since the distribution function $ is found in the form of a series 
expansion, the vertical beam emittance EY is also an expansion. 
The zeroth order term of this series is the unperturbed beam 
emittance Ey. It is easy to see that due to symmetry of the 
sextupole field, the first order term in Eli is zero. Hence 

E”=l+Az , where (8) 
CY 

AZ =kk$!/ dV ( u2 + vr2/r2) 1 dV1 G(V, V,, sek) 

-CL 11 y&l’ v, dl/o WI, h skrn) 

xpo+p& 
( zau’ y au’ > v, 

Here V = (u,u’, v, Y’) and VO = (un,uA, ~0, vh), are points in 
a four-dimensional phase space of the transverse motion, 

1 U2 u’2 u2 V’Z 
$o=eqJ --- 

2tz 2& 2cy 2r,~21/ 
(27+&V tyr (10) 

and 

G(V, &I, qm) =Gu(u, u’, ~&JO, u&6m) 

x G(v, u’, fMvo, 26, ha) (11) 

is the Green’s function as it is discussed in Ref. 1. It is simplier 
to perform the space integrations first over V, then over VI 
and at last over VO. The integral of v2 over V is the second 
Green’s function moment 4 = po + pivf + pi;:’ + 2p3vlui, 
which has been evaluated in Appendix B of part I [see formulae 
(B.12) through (B.15) for coefficients pi(B) 

!! 
. The second Green’s 

function moment (of v”) Qz = qo + qfu; + q&i2 + 2qsului is 
found in Appendix B of Part II” [see formulae (B.lO) through 
(B.13) for coefficients qi(e)]. Since neither Pz, nor Q2 depend on 
U’ only the term conmining F, contributes to the integral over 
v? i In addition to this, only terms in P2 and Qz which depend 
on vi contribute to the value of the integral. Since Fy (~1, VI) 
is proportional to ulvl [compare expression (4)], the integral 
over VI is the product of the first moment of G, (PI in the 
notation of Ref. 1) and the sum of two second moments of G, 
(ij~ and Pz in the same notation): 

PI = PI ~0 + p2 ~6 , where (12) 

jl = e , (13) 

p2 = emnb sin vd/v (14) 

Here 4 stands for $!Jk - drn. Further, 

P2 = po + piu$ + p&i2 + 2p3uovA and (15) 

P2 = r0 + rlv$ + rpA2 + 2rgvnr~~ . (16) 

Expressions for coefficients p,(O) and ri(S), where 6 = 6k - 
f?,,,, may be found in Appendix B, Part I.’ 
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The last integration in (3.4) over Vu is very simple. The 
result is: R1’= 1- Js262;2:I+ v) igl $) 

26, $1 ,-a+-26e 

X co8 279 (cm vtj + E sin ~4) 

_ $ sp’ e-Q&-2f4 sin W#J 
( 

sin 276 + :-If co9 27-9 
r >I 

+ r/3 m2k [(cy Sk’ - CD Sg’) eva+ sin v# 

+ ($ $4 e-a+-2tY . stn wq+ 1 + co8 2~3 + 24 ain 258 
( > 

+ 2(, ~$1 e-a+26@ (cm v# + F sin w$) 

X 
( 

sin !h9+~-4 co8 278 
II 

, 

Here @ denotes 6k - em, 4 = 4k - $m, and 

f2=esz6’( T 1-f sin 218 )/r”, 

(17) 

(18) 

f3 = 6emz6’ (1 - co3 27 e) 
I 

r2 , (19) 

where 8 stands for 81 - 8k. 

The subscript (k or m) in the notation of sextupole magnets 
numbers them in the order in which they are seen by a bunch. 

Consider now the general case of n arbitrarily positioned 
sextupoles in the ring. Taking as an example the typical sum 
over m of cosine terms in expression (17) we present it in the 
following form: 

RT = c SE) ezp [ -a( q$,, - +k) - 26( 0, - ek)] 
m>k 

x co9 /24e, - ok) + d$rn - #k)l 

= 42) 
1 
1 2 + mcl ev(--2 7ram - 47rbm)cos(4mm + 2nvm) 1 

+ Sf) ezp [-~~(42 - 41) - 26(02 - @l)l 

X 5 ezp(-2?ram - 4&n) 
m=O 

x co9 [4a7m + 27rvm + 2r(Bz - 01) + 442 - &)I + . . 

+ SL” ezp [-ry(qb - 41) - 26(& - @I)] 

X mzo ezp( -2acrm - 4drn) (20) 

X co3 [4n77n+ 27rvm + 27( 0, - 01) + v(#n - &)] . 

Here quite arbitrarily the starting sextupole is numbered as St. 
In the first term of expression (20) only half pulse at ‘time” 
zero is taken into account in accord with the summation rule 
developed in Ref. 4. Performing some algebra we get: 

X CO8 [22(8i - 01) + V(di - dl)] 

+ 
2stn 7r:2r + v) .$ s8!2) l-2 

(21) 

X ev [-dOi - 41) - 26(ei - @l)l 

X 8ifl[x(2r + .V) -2r(Bi- Or) -V($i--I)] . 

There are in general n different sums RI, j = 1,2,. . . , n, 

similar to Rr. They appear, when one consider similar sums 
starting from the sextupole, positioned at j-th place in the ring. 
Any sum evaluated for the sextupole shifted by n + 1 positions 
from the j-th one is equal to the j-th sum: 

Rt =Rt . 
I+n f (22) 

Exponents in each of the second sum in expression (21) are 
very close to 1, since o and 6 are usually small. Hence, the 
exponential factors may be expanded and all the terms of the 
order (aA#)2 and (c~AO)~ and higher may be omitted. 

Let us introduce notations: 

At = 2 S!"). 

I i-l 3+:--l 
CM I2r(@j+i-1 - 0-i) + d4j+i-l - 4j)] (23) 

Bt = 2 S!2).- 
I J+l 1 (24) 

i=2 

X sin [T(2T + V) - 2T(Oj+i-* - Oj) - V(~j+i-1 - $j)] 

CT = 2 Semi_1 [2(@j+i-1 - @j) + :($j+i-1 - bj)] 
i=l 

X sin [s(2r + Y) - 2T(Oj+i-1 - Oj) - V(dj+i-l - ~j)] 

(j= 1,2 ,..., n) . (25) 

These values have the same periodic property (22) as RT. 
The latter can be now written as follows: 

R+ = n(26 + al 1 
3 2ain27r( 27 + v) A;+ . 2stn n( 27 

+ 
v) Bj’ 

6 (26) 
- 

2sin ~(9 + V) 
cj’ . 

It is easy to find now the double sum over k and m of the 
considered term: 

c sf’eq.J[-26(8k - @()I@ k 
k>C 

(l+ a’26) cl+ - 8Tarna;2r + “) c+ 
(27) 

=4sin2n(2r+ v) , . 

where a new notations are introduced: 

a+ = I$1 Sf?’ A;i’ 

c+ = ,&5-y cj’ . 

(28) 

(29) 
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Notice the absence in expression (27) of the term propor- 

tional to b+ = Cy=, S~.21~~. Indeed, it is easy to check, that 
this quantity is equal to zero. 

Introduce now similar notations for all other types of terms: 

a- = 2 Sj?’ A; , (30) 
j=l 

c- = 2 sy c,: where (31) 
j=l 

A3 = 5 SJT;-l~~~ 12r(Oi+i-1 - Oj) - V(dj+i-l - #j)] , 
i=l 

(32) 

CT = 5 Sj.?!;-l 2(Oj+;-1- Oj)+f($Jj+i-1-4j)] 
i=l 1 

X sin[K(2r - V) - Sf(Oj+i-1 - Oj) + Y(#j+i-1 - dj)] 

(33) 

a;,2 = Jgl SIT) At!“’ , where (34) 

A~~“) = i$l Sj.>‘!l CO3 V(#j - #j+i-l) . (35) 

The terms of cy 2 types are of higher order of magnitude in Q 
and do not enter the final result. 

In a similar way one can calculate also the sine type terms 
in expression (17). In this case one needs to introduce quantities 

& = 5 S!‘) D+ 
j=l ’ ’ 

and (36) 

G,2 = 
2 5”2, D(!?2) 

j=lJ ’ ’ 
where (37) 

D+ = 2 S!‘).- 
I 

i=l 
J+l 1 

X COS[T(2T*t)-2r(@j+i-~ -0j)F V(@j+i-l-4j)] 

(38) 
and 

D’~“) = i~2 Sl~~!l CO9 1~~ - V(~j+i-l - ~j)] . .I (39) 

In terms of the quantities a, c and d the final result for A2 
is: 

A,, =L Wh + 9/2)(1 + a/26) (&+ ez +c,P c+ 
I 

4* 1 sitl%r(2r + v) -sin n(2r+ Y) 

+2n(t-,-cg/2)(l+(r/26) n-- ez-cy/2 _ 

sinzn(2r- v) sin 42~ -Y) ’ 

+ (h + fL.5 $2 + cy) d+ + (h - bs - cy) d- 
r sin a(2r + v) r sin *(2r-v) 

+ 
cy d!: tz d: A--, 

r sin iw r sin iw > (40) 

For a ring with M identical superperiods expression (40) is 
invariant under the following transformation: 

* 
6 

A2(w,olr,6,n)=A2 &, $, bM, -& > 

The quantities a*~‘, C* and d*l’ can be named the (sex- 
tupole) distribution factors. For a given ring only the distribu- 
tion factors change, when parameters of the distribution of the 
sextupole magnets, i.e. their number, strengths and positions 
in the ring, are changed. In general there are eight distribution 
factors altogether. 

Here is the result of the evaluation of the vertical beam size 
growth for the current PEP configuration (assuming optimal 
coupling): v = 21.25, /$ = O.llm, r = 18.19, a/b = 1.0, 

,Bz = 3.0m, @ = 0.19, uZ = 0.58mm. 

The calculation by formula (40) yields: 

i.2 = 1.3% . (42) 
631 

The beam emittance enhancement of the same magnitude 
is found also for other points of the tune diagram which are 
not too close to the resonance lines 2~ rt v = integer and v = 
integer. 

The beam increase AE~/E~ goes as cube of the beta func- 
tion value at the sextupole positions. Hence its value might be 
much larger for a larger size ring. The invariance of the result 
(42) under the transformation (41) has been confirmed by the 
numerical calculation. 
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