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Summary 

A certain class of magnet misalignments in stor- 
age rings and other accelerators produces closed orbit 
distortions (CODS). Quite often the CODS are measured 
at a fewer number of locations (N) than the number of 
misalignment parameters (M). There is a linear rela- 
tion between COD measurements. u(j), j=l, . . . . N and 
the misalignment parameters' e(k), -k=l, . . . . M. 
Hence the c(k)'s are underdetermined. If M < 2N, 
one can obtain an overdetermined set of equations by 
measuring the COD at two quadrupole settings. There 
are several ways of inverting the COD measurements to 
get the misalignment parameters that are fairly insen- 
sitive to errors in the measured CODS. A computer 
program called CODINV has been written to test some of 
these schemes. Two schemes give fairly good results 
when applied to the lattice of the Los Alamos Proton 
Storage Ring (PSR).' The first scheme requires meas- 
urements at two nearby tunes and the use of singular- 
value decomposition methods. The second scheme 
requires measurements of the CODS in the FODO and DOFO 
cell arrangements but is easier mathematically. 

Introduction 

The problem of expressing CODS in terms of magnet 
misalignments has been solved for a long time.'p3 The 
inverse problem of expressing the misalignment param- 
eters in terms of the CODS measured a few places in 
the Ring or along the accelerator is a perennial one. 
It is well known that magnet misalignments lead to 
t?lne shifts, to coupling of transverse betatron modes, 
and to distortions of the closed orbit.' These 
distortions lower the machine acceptance and are of 
primary concern when a new machine is turned on. It 
is also well known that, if one ignores variations in 
magnet current from the ideal current, then there are 
only two degrees of freedom per magnet that can cause 
CODS." One of these affects the horizontal motion 
and one the vertical motion; thus, the alignment prob- 
lem can be separated into the problem of horizontal 
COD and the problem of vertical COD with one magnet 
degree of freedom associated with each. It can be 
shown for example that a longitudinal displacement of 
a dipole causes horizontal COD, and a roll displace- 
ment of a dipole introduces vertical COD. For quadru- 
poles, horizontal displacement affects horizontal 
motion, and vertical displacement affects vertical 
motion. All other displacements of these magnets 
either have no effect on the beam, or else they cause 
tune shifts and mode coupling. 

It will be shown in the next section that the 
equations of motion lead to a linear relation between 
the CODS and the displacement parameters. This rela- 
tion can be written 

ui(j) = r" Ti(j,k)ci(k), j = 1, . . . . N, i = 1, 2 ,(1) 
k=l 

where i = 1 is horizontal, and i = 2 is vertical. This 
linear set of equations could be solved exactly for 
ei(k) if N = M, or could be solved in a least-squares 

sense if N > M. However, the usual case is that N 

(the number of beam monitors) is less than M (the num- 
ber of magnets). When N < M, one says that the system 
of equations is underdetermined. There are least- 
squares methods for dealing with these systems, but 
they always involve imposing additional constraints on 
the system such as simultaneously minimizing the sum 
of squares 

: ei(k)2 . 
k=l 

One can also impose a physical constraint by ignoring 
misalignments of the dipoles and by fitting the CODS, 
using quadrupole parameters only. The result of these 
procedures often can be unrealistic in terms of sug- 
gested magnet displacements and sensitivity to slight 
changes in the measured COD. 

One would like to increase the number of equa- 
tions by increasing the number of points at which the 
COD is measured. Often it is experimentally impossi- 
ble to increase the number of beam-position monitors 
because the desirable locations are taken up with 
extraction kickers, halo scrapers, or other such 
equipment. The alternative being suggested in this 
paper is to make some change in machine parameters, 
which will lead to changes in the matrix elements 
Ti(j,k) and to remeasurement of the COD. This gives 

two sets of eauations 

Ui(j) = ! Ti(j,k) ci(k) , 
k=l 

and 

M 
ui(j) = kfl Ti(j,k) ci(k) , 

which can be written as one double-matrix eauation 

M 
U:(j) = Kt, Tq(j,k) ci(k), j = 1, . . . . 2~ . 

If 2N > M, this set of equations can be solved by 
ordinary least-squares methods, provided the matrices 

Ty are not ill conditioned. It turns out that if 

ii is obtained from Ti by making a small change 

in the quadrupole strengths, then Ty is in fact 

ill conditioned, and it is necessary to use a special 
method to solve this set of equations. The method 
calls for a singular-value decomposition of the 

matrices Ty as described in Chapter 11 of the 

LINPACK User's Guide.' (If Ty were a square 

matrix, the method would amount to identifying and 

discarding the large eigenvalue of Ty before 

taking the inverse.) 
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We have investigated two other ways of producing 

matrices Ty for the PSR. One can change the sign 

of the quadrupole gradients, or one can interchange 
the quadrupoles to make DOFO cells out of FOOO cells. 
The latter change has the advantage of not changing 
the tunes. This probably will make it easier to get 
a beam through the lattice. In both of these cases, 

the Ty's are well-conditioned matrices that give 

stable least-square solutions even when random errors 
are introduced into the CODS, ui(j). 

The computer program COIJINV, which we have writ- 
ten to study the stability of these inversion methods, 
also produces beamline plots of the CODS. Although 
the program was written specifically for the PSR lat- 
tice, it should be easily adaptable to any other Ring 
or even to a linear transport system. 

The next section outlines how one goes from the 
equations of motion to the matrix equation, Eq. (1). 
The final section gives some applications to the PSR. 

Matrix Equations 

Let us assume that we have a storage ring with 
separate function magnets. Ignore the synchrotron 
motion caused by rf bunchers. The equations for the 
transverse motion relative to the ideal orbit are 

mui = (-l)'e(v3Bi - biB3); i = 1, 2; i = 2, 1 ,(3) 

where v 3 is the particle velocity along the direction 

of the orbit, and B3 is the magnetic field parallel to 

“3. 
Because ;; and B3 are usually small, one neglects 

the b;B3 terms. It is customary to expand 6~ in powers 

of the ui's, to use path length s = v3t as the inde- 

pendent variable, and to move the linear terms to the 
left side of the equation. The coupling terms and the 
nonlinear terms are neglected. The result is 

Undo + Ki(s)ui(s) = (-l)i %~B;;(s), i = 1, 2 .(4) 
0 

The double prime is a second derivative with 
respect to s; p3.is mv3; Ki(s) is proportional to the 

field gradients in the quadrupoles. Also, there is a 

(l/R2) term from the centrifugal force in the dipoles. 
The components he?(s) are the field errors caused 

by misalignments. Because one is looking for the 
closed orbit, periodic boundary conditions are imposed 
on the Green's function solution 

0 
ifrR 

ui(s) = (-l)i ?- I Gi(s,s')ABT(s')ds', i = 1, 2 ,(5) 
P3 0 

where 2rrR is the ideal path length around the Ring. 
The Green's function can be expressed in terms of the 
betatron function B?(s) of the perfect Ring 

G.(s s,) =\i'i(')'i(") 
1 ’ 2 sin (nQi) 

cos [noi-lYi(s)-Yi(s’)I 1 t(6) 

where 

Qi = Yi(2rrR)j2n = (&) fRds,Ri(s) 
0 

are the tunes.' The phases Yi(s) are defined impli- 

citly by Eq. (7). The betatron functions, of course, 
are dependent on the ftinctions Ki(s). In the program 

CODINV, they are calculated using first-order trans- 
port matrices for the ideal elements. 

Assuming that the field errors ABi(s) are nonzero 

only in the magnets and are proportional to a misa- 
lignment parameter ci, the integral in Eq. (5) can be 

broken up into a sum of integrals, one integral for 
each magnet, 

1 ,(8) 

where C,.(k) is the constant of proportionality between 

ABi and ci(k) in the 4th magnet, and the integral ex- 

tends from the beginning to the end of the magnet. 
The notation can be compressed by writing 

M 
up = r 'i(S,k)Ei!k), i=l,Z . 

k=l 
(9) 

If one evaluates these equations at N beam-monitor 
positions sj, j = 1, . . . N, then one obviously obtains 

Eq. (1). The matrix elements Ti(j,k) are easy to 

evaluate from the geometry of the Ring and the beta- 
tron functions. Details of the derivation outlined 
above, as well as a more complete description of 
CODINV, are given in PSR Technical Note No. 111.' 
Equation (9) is useful in plotting the CODS around 
the Ring if the misalignment parameters are given. 
Examples of these plots are given in the next section. 

Applications to the PSR 

The PSR, which is under construction, consists of 
10 FODO cells, that is, 30 magnets. Present planning 
calls for 18 beam-position monitors that will be 
located at the entrance to the focusing quadrupoles 
and at the exit of the defocusing quadrupoles in each 
cell. The exception to this occurs in Cells 7 and 9, 
where the monitor will be missing from the defocusing 
positions. The monitors are expected to give the 
centroid of the beam to an accuracy of approximately 
+1 mm. Figure 1 shows,a horizontal COD produced by 
a random set of magnet misalignments. A random error 
in the i1.5-mm range has been added to the COD 
points calculated using Eq. (9). Table I gives the 
parameters c,(j) for the 30 magnets. A second 

COD was generated by changing the quad strengths in 
each cell by 0.707%. Table II gives the residual 
parameters after the two COOS have been least-squares 
fitted using the singular-value decomposition method 
mentioned above. Figure 2 shows the residual COD. 
The bumps in the residual occur at the positions of 
missing monitors. 
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Fig. 1. Horizontal COD produced by random magnet Fig. 2. Residual horizontal COD after fitting with 
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TABLE I Acknowledgments 

MAGNET DISPLACEMENTS FOR HORIZONTAL COD The authors would like to acknowledge helpful 
discussions with R. K. Cooper, G. P. Lawrence, and 
G. Spalek. Defocusing Quad 

Displacement 
(cm) 

Dipole 
Displacement 

(cm) 

Focusing Quad 
Displacement 

(cm) 

-0.334 0.193 0.055 
-0.036 0.481 0.463 

0.098 0.180 0.486 
-0.301 0.374 0.428 
-0.184 0.414 0.345 

0.075 0.016 0.071 
-0.134 -0.320 -0.078 
-0.369 -0.471 0.106 

0.293 0.203 0.380 
0.261 0.116 -0.226 

TABLE II 

RESIDUAL DISPLACEMENTS FOR HORIZONTAL COD 

Defocusing Quad Dipole Focusing Quad 
Displacement Displacement Displacement 

(cm) (cm) (cm) 

0.057 -0.125 -0.036 
0.084 0.367 0.091 
0.138 0.420 0.161 
0.239 0.267 0.133 
0.142 0.134 0.067 

-0.068 0.038 0.007 
0.316 -0.341 0.019 
0.103 -0.806 -0.274 

-0.065 0.395 0.068 
-0.080 0.501 0.195 
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