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Abstract 

A review is given of the mathematical derivation 
of the Courant and Snyder invariant which is 
well-known as the betatron emittance in accelerators 
or storage rings. It is shown that the existance of 
such an invariant is a remarkable characteristic of a 
linear system even for non-periodic motion. 

Introduction 

Over the past quarter century, a considerable 
amount of work has been devoted to the study of the 
time-dependent linear oscillator 

. s 
z t I<(s) x = 0, 

which represents betatron oscillations 
accelerators and storage rings. Courant and Snyd, 
first found that a conserved quantity for Eq.(l-1 

I= -!- 
. 
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[ x2 + ( yx - pm; > , ( 

I 

where x(s) satisfies Eq.(l-I) and e(s) satisfies 
auxiliary equation 

+ P ‘6 - + 6’ 3 kCs)p= = 1. ( 1 -3) 

in 
eri 
is 

-2) 

the 

Several derivations of the dynamical 
invariant(l-2) have been given in the literature: The 
exact invariant was derived by Lewis and Riesenfeld' 
on the assumption of quadratic invariance. Lutzky' 
derived the Invariantcl-2) from Noether's theorem and 
recently Korsch4 presented a proof of the dynamical 
invariance of (:-2) using the method of dynamical 
algebra. An early discussion about the general 
interrelation between the differential equationcl-1) 
and (l-2) can be found in an article by Milne.' In 
addition, a physical meaning of the origin of the 
invariant was presented by Eliezer and Gray,6 with 
the help of auxiliary plane motion. 

It is the aim of the present note to review the 
three different methods for deriving the dynamical 
invariant (l-2). 

Derivation of Invariant 

a. Time-Dependent Linear Canonical Transformation 

We shall show explicitly that a time-dependent 
Hamiltonian 

kl cx,p;s> = ; I: PZ + KCS)X’l, (2-l) 

can be converted to time-independent form with the 
help of a time-dependent linear canonical 
transformation and a change of time scale. 

The canonical equations of motion obtained from 
(2-l) are 

*Operated by Universities Research Association Inc., 
under contract with the U.S. Department of Energy. 

. au 
x = ap =P, (E-2a! 

b 
aH = - a-z = - kCS)X, (2-2b) 

First we require that the Hamiltonian in Eq.(2-1) is 
transformed into the form 

H’Cx<p ;sl = -y +, ( p’ -t x’), (2-3) 

with a time-dependent function f(s) which is 
determined later, by means of the time-dependent 
linear transformations 

x = A: CSl x + gcs>p ) (2-4a) 

P= /I: CS) x -t /I&’ I (2-4b) 

Because we assume the canonical transformation, the 
time-dependent coefficients /$:(s),&s), @s),and 
A:(s) in Eq.(2-4) must satisfy the relation 

l\~CS~/& - /$w1\:cs~ = 1. (2-5) 

The canonical equations of motion obtained from 
Eq.(2-3) are 

BH' 
i = aP =f cs>P , (2-6a) 

'p 
-at+'= -fCs>X . = -ax (2-6b) 

In order to deternine the unknown time-dependent 
coefficients in (2-3),(2-4), the relations in 
(Z-2),(2-4),and (2-6) are combined in such a manner 
that the new canonical variables are replaced by the 
old ones. This is effected by taking the time 
derivatives of the relations in (Z-4), replacing X 
and P by the expressions (2-6), and then substituting 
x and p by the quantities given in (2-2). Finally we 
equate the coefficients of like powers of 
x7 P, x: and $from both sides of the equations and 
obtain the relations among the coefficients 

- I 
A, = KCS) A: + +w: , (2-7a) 

i\: = - /I: -t +csult, (2-7b) 

'2 
Al = - scsbl: + KW A: , (2-7~) 

/;: = - +s,A: - A: . (2-7d) 

The coupled equations (,2-7) may be solved by the 
well-hewn matrix method. However we show a set of 
particular solutions satisfying 
Taking fi: :O and replacing A', with 
trivial to obtain the solution for 
The solution is 

A: (0 = Pk. 

z;b;&l;;uting A\ =0, &= p(s), and 

4 (5-l = PCS), 

Also substituting the time 

Eqs.(2-5),(2-7). 
p(s), it is then 
A: from (2-5). 

(2-8) 

2-8) into (2-7b), 

(2-9) 

derivative of 
,j: , &(=OJ and (2-9) into (2-7a), we have 
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A: = - G(S) (2-10) and 

Eq.(2-10) is equivalent to Eq.(2-7d). Next, 
substituting (2-8), (2-g) and (2-10) into Eq.(Z-'la), 
we obtain the differential equation satisfied by 
P(s), 

*- + KCSl P = P 
-3 

9 . < 
(2-11) 

If we replace P(z) with m, the differential 
equation for the so-called betatron amplitude 
function p(s) will be easily written down 

+sj - $ 6' + lq3== 1. (2-12) 

Furthermore, if the change of independent 
variable 

4 (5) = 5’ fcs’,ds’, (2-13) 

is made, the Hamiltonian H' becomes 

H”cX,P; c$) = + ( Pa+ x2>. (2-14) 

Evidently the new Hamiltonian H" is a constant of 
motion in the coordinate system of (X,P;+ 1. It is 
apparent that Eq.(2-14) is invariantin the old system 
(x,p;s); 

dY"= _ _ = fcs)~"~~ d H”d+ 
dS d+ (JS 39 * 

Next let us show (2-14) as a function of 
x and c. 

P(s), 
Using 

(2-8) and (2-101, we write the z - dependent 
coefficients of A',(s),A:(s),h:(s), and I\:(s) in 
(2-4a),(2-4b) with the functionf(z), 

Ah = p-&, A:(s) =o, 

A:cs) = -~p-~(+), ~~21<‘)S (&). C2-15) 

Introducing these values in (2-4a) and (2-4b) and 
substituting them into (2-141, we obtain the 
invariant 

Setting p=;C and H"= I in (2-16) f we write the 
dynamical invariant in the form 

I= As, 

P L 

Yp + &x-p&f]. (Z-17) 

b. Dynamical Algebra 

We azzume the dynamical invariant in the 
quadratic form 

I = +.~,<~)~r + &,CSJ px +$Wxc=, (2-18) 

for the harmonic oscillator (2-l). The coefficients 
k(s) are determined by the time evolution equation 

for a phase-space function 

a= + 
as 

CI,Hl =Q, (2-19) 

where L 3 is the Poisson bracket. 
(2-l) and' (2-18) into (2-191, we 

Substituting 
obtain the 

differential equations for a,(s) 

with 

= Mih, (2-20) 

a- = Ch,,Yb, &JT 

Sere, setting I,= &(z), we find 

xz= ” -z gc, (2-21a) 

23 = -we,, (2-21b) 

;Cb = ‘I pc ' *- + Kw(3,. (2-2lc) 

Equating the derivative of (2-21~) with (2-21b), we 
finally obtain 

. . . 
PC 3 4KCr)& t 2 ks+: 0, (2-22) 

which has the integral 

+ (5‘-& - + j‘= + KCS) pc = c. (2-23) 

The solution of (2-23) determines the x,,(s) and the 
dynamical invariant (2-18) is therefore expressed in 
the form . 

1 = &,[ x? + ( px-p.,Ps]* (2-24) 

Here the arbitrariness implied by the constant C is 
removed after some manipulations. 

The dynamical invariant for an off-momentum 
particle has been also obtained by the present 
author,' based on dynamical algebra. 

c. Noether's Theorem 

The formulation of Noether's theorem presented 
in this section has been given by Lutzky. If the 
transformation 

a a 
CT = t (x, S) s + @(XT s)ar 

I . 
leaves the action integral k,(x,x;s)dS invariant, 

$2!.? aha 
as t "25 -Gl-;[) (2-25) 

where f=f(z,t), and 

p.+;;& k+t;;g, i=;g .a+ + x-ii, 
then a constant of the motion for the system is given 
by 

H = ($2 -n)$ - $r, +f. (2-26 ) 

The Lagrangian L q &(;'-K(s)*x~) gives the equation 
of motion (l-1); using this lagrangian in (2-25) and 
equating coefficients of powers of G to zero, we 
obtain a set of equations for $ ,n,f 

ak 0 ax=, 

en 
DX 

tal o 
(2-27a) 

-i== I (2-27b) 
an -hr& - $$ -0, 
as -2 (2-27~) 

- ;lkr,r"- nw)x - +a& x2- -7 al af q)- (2-27d) 

Eq.(2-27a) implies that $ is a function of s alone. 
From (2-27b) and (2-27c), we obtain the results 

hC%,!il = f;x -I- 44) 

' 

(2-28) 

x2 t q-(5)X t CCS), 
(2-29) 
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where ;icl)+ K(s: m+(s)=0 and C(s) is an arbitrary 6. 
function of s alone. Choosing C(s)=O, +(s)=O and 
substituting (2-29),(2-29) into (2-2761, we find 7 

..- 
k -t 4IW~ +2 ias,++ = 0. (Z-30) 7. 

Eq.(2-30) has the integral 

.Lt -g -+<a + l<wg,L= c, (2-31) 8. 

where Z is an integration constant. Replacing $ 
with &(s) in (2-28), (2-291, and (2-31), We have 

ncr, s-l =& * (5)X, (2-32a) 

tcx, 51 = 2 ij,w 2, (2-32b) 

;p+ -$ (y-). k(+= c. (2-32~) 

Further using (2-32c), we obtain 

+ cx, S-J = + (2-33) 

Finally setting < = PC in (P-26) and substituting 
(2-32a),(2-33) into (P-26), we write the invariant 

3 = L&XL t (@)- +,‘I (z-34) 

Here the arbitrariness by the presence of the 
con3tant c is removed in the same way as in the 
previous subsection. 

Remark 

As a natural extension of the present 
discussion, an explicit expression of the Courant and 
Snyder invariant for a linear coupled betatron 
oscillation produced by skew quadrupole components 
can be obtained. The invariant must be accompanied 
by new auxiliary conditions. These conditions are 
satisfied by perturbed betatron amplitude functions. 
In particular, a dynamical invariant will be 
presented elsewhere for a time-dependent weak coupled 
harmonic oscillator. 
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