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Summary

An achromatic system is one where the transfer
matrix elements for the transverse coordinates do not
depend on momentum. An isochronous system i1s one
where the transit time of a trajectory through the
system does not depend on the 1initial coordinates.
It is well known that a first-order achromatic system
is also isochronous, except for pure momentum
dependence. The converse is alsc true. This result
is entended to higher orders. Conditions are found
3c that for a system whose chromatic terms all vanish
up to a certain order the traanslt time will be
independent of the transverse coordinates up the same
ordar. Under the same conditions, the converse will
also be true.

Introduction

The 1location in phase space of a particle
passing through a magnetic optical system is usuwally
spenified with respect to a reference trajectory.
The three spatial coordinates of a beam particle are
the two transverse coordinates x and y and the

distance s along the reference trajectory.
Corresponding to these three coordinates are the
three conjugate momenta p , p, and p . In a

field-free reglon, these three com%onents reduce to
the three Cartesian components of the mechanical
momentum.

In practice, the two transverse momenta are
replaced by the two direction tangents or "angles" x!
and y'. The longitudinal position s is replaced by
the 1longitudinal separation 2 from the reference
particle. The sixth component 1s the fractional
deviation § of the momentum from the reference
momentum. The position and momentum of a particle at
any point in a beam line can be expressed in terms of
a six-component vector ¥, where

X
X'
X = z' (1
2
§

The components of the vector at any point in the
beam 1line can be expressed as functions of the
components of the initial ray vector. Retaining only
linear terms yields

X, =z RX (2)
1 o]

Defining matrix elements T, U, etc. with severail
indices, and summing those indices also, the
expansion may be extended to nhigher orders, 3o that

X1 = RXO + TXOXO + UXOXOXO + e (3)
The matrix elements of R are referred to as being of
first order; T 1ls second order; U is third, etc.
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We may now define precisely what we mean by the
terms achromatic and isochronous. A systenm is
achromatic to a certain order if the final matrix
elements for the transverse coordinates x, x', y, and
y' have no dependence on § to that order. There may
still exist nonzero geometric matrix elements, where
the matrix element multiplies products of initial
transverse coordinates. A system is isochronous to a
certain order if the transit time difference has no
dependence on the initial transverse coordinates to
that order. For an ultrarelativistic beam, equal
transit time is the same as equal path length. For
lower energies, velocity differences must  be
in2luded. The differences between the Gtwo appear
first in second order. OQur result applies strictly
only to transit time differences. There may still be
a dependence on powers of § unmixed with other
coordinates.

First Order

We may use a bra and ket notation to indicate
any particular matrix element. The columns of the
first-order transfer matrix are also known as the
characteristic rays, so that

(x[xo) = e, (s) (x'[xo) = er(s) (4)

(x]x1) = s.(s) (x'[x!) = si(s)

(x[8) = d (s x']8) = di(s)
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(y[yé) sty = s;(s)
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The dispersion may be given in terms of the
transverse characharistic rays, and the angle a of
the bend magnets as

-

dx(s) = s{(s)J[ cx(s) da - cx(s)j sx(sl da

~~
1
~

d;(s) sk(s) j/ox(s) da - c;(s)‘/ sx(s). do

The longitudinal separation is given as

% = xq/;x(s)du + xéj{sx(s)dd + ¢ [dx(s)da (6)

<

From equations (5) and (6), we see that the
stated thecrem conhecting acnromaticity and
isochronicity is true in first order. The relation
between the coefficients can be written as

N VORI R V) -

38 T Wt 9x ax _ ox!
o o o o

3

K.'
a8 T 3x' 9x T 9x_ 9x’'

[o]
[e]
[e]
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This form is highly suggestive of how the result may
be extended to higher orders.
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Relation toyCanonical Variables

In a charged particle beam or spectrometer, one
is interested in the behavior at the end as a
function of the trajectory coordinates at the
beginning. Since the time of transit may depend on
the initial coordinates, it 1{is more convenlent to
parameterize the equations of motion in terms of a
coordinate which has a unique value at the end of the
system. For this purpose, we use the distance s
along the reference trajectory.

Following Dragt1, we may then regard the transit
time and the Hamiltonlan as conjugate variables. A
new Hamiltonian may be derived as the momentum
conjugate to the distance along the central
trajectory. It will be a function of three
eoordinates and their conjugate momenta. The three
coordinates are the two transverse coordinates x and
v, and the transit time t. The conjugate momenta are
the two transverse momenta and the original
Hamiltonian. In a static magnetic system, the value
of the Hamiltonian is equal to the kinetic energy of
the particle.

The new dependent variables are completely
canonical and satisfy Hamilton's equations of motion.
The Hamiltonian and the transit time now have no
special status and are Jjust one of three sets of
conjugate variables., By a canonical transformation,
they can be replaced by differences, 1 and ¢, with
respect to the relarence trajectory.

Poisson Brackets

The complets set of variables for a particle
trajectory is now x, p_, ¥, P,y T, and =. The symbols
T and < indicate respectivelyythe time separation of
an individual trajectory and the reference particle,
and the difference in energy for the same two
particles. 3ince the variables are canoalcal and
satisfy Hamilton's equations, they also satisfy the
fundamental Poisson brackets

[qi,qj] =0 (8)
[pi,pjl =0
[qi,pJ] = Sij

Here we are interested in the Poisscn brackets
between T and the trangverse variables. The brackets
involving ¢ and x and those involving t and y are
between different coordinates. Those between T and
p._ and between T and p_ are between a ccordinate and
a non-conjugate moment&m. A1l equal zero. A further
simplification occurs since we are working with a
static a3ystem. The transverse coordinates then have
no explicit dependence on initial time difference,
and the derivative of final time difference with
respect to initial time difference is unity.

The result can then be written as

3x,p,,¥,0,) 3T (9)

X
p
e ;’ 3(xo,pxo,yo,pyo) a(Pxoyxo’pyosyo)

We can define two vectors T and Lc’ and thereby
write equation {9) in the form

T = ML (10)
[¢] <

The vector T represents the left side of equation
(9), which i§ the derivative of the transverse
canonical variables with respect to €,. The vector L

represents the derivatives of T with respect to thé
initial canonical transverse variables. The Matrix M
is the local linearization in canonical variables of
the mapping of the original space of transverse
coordinates and momenta into the final space of the
same variables. By Liouville's theorem, the phase
space volume is conserved and the determinant of M is
equal to one.

Relation to Transport Variables

Using the chain rule, the vectors T and L_, can
be expressed in terms of derivatives wi%h respéct to
the transverse coordinates given in equation (1).
The progedure is wmore straightforward for the
longitudinal vector L, so we consider that first.

We define a new vector L, which contains the
derjivatives of T with respect to the variables X
xé, Yo and yé. We now have

Lc = NL (11)

where N is a four-by-four matrix. In lowest order N

takes a particularly simple form

( 1 0 0 0
0 1/p. 0 0
° 0 (12)

0

0 o

0 0 1/po/

The matrix is nonsingular 1in lowest order, which is
its exact form when evaluated at the origin. By
continuity, it is then nonsingular in an open region
containing the origin.

The connection between L, the dependence of time
difference on initial transverse coordinates, and T ,
the dependence of the final canonical transverse
coordinates on €, 1is then made easily. From
equations (10) and (11), we have

Tc = MNL (13)

However, what we want 1s the dependence of final
transport variables x, x', y, and y' on initial €.
From the standpoint of canonical varlables a drift
space has chromatic dependence. If we hold the
initial p_ and p_ constant, and vary the energy, the
final transversg position will be affected. This
occurs Dbecause .the Jlongitudinal momentum p is
changed and therefore the angles x' and y' are
affected. In studying achromaticity, we are
interested in the dependence on energy when the
initial angles x' and y' are held fixed.

To convert to transport variables, we must use
the chain rule at both the initial and final points.
We use it at the final point simply to transform to
the desired variables. We use it at the initlal
point because a derivative with respeect to € holding
Pyo fixed 1is different from a derivative holding x'
fixed. We therefore have three sets of partial
derivatives. The first is the set of derivatives of
the final canonical variables with respect to the
final transverse transport variables. Then we have
the transfer functions giving the transformation of
the transport variables by the beam line. Finally,
Wwe must express the initial transport variables in
terms of canonical variables.



The energy difference ¢ 138 unchanged by all
these transformations, but the functional dependence
on it is not. In order to be explicit about the
functional dependence, we add a subscript to the
variable €, indicating the beginning or the end of
the system. Derivatives with respect to canonical
sets of coordinates are indicated by a subscript c.
For the horizontal components of Tc’ we then have

d€ T % %t dy! 3¢ 9
o ¢ o o o o o
R L B S R L P
Je T &! &' 8e T dx: Oy’ Be_ T ox! de
o ¢ 1 [o) o 1 Vo [e] 1 o
P M WA e WL
{ §§Z aEo yi E;g aE:o E1

The derivatives of the transformations between
canonical and transport variables are purely
kinematic and can be expressed in terms of transport
variables. For an ultrarelativistic beam, they are

simpler in form, but the argument 13 unchanged. We
then get

apx o px'2

x' = = - (1+x‘2+ 12)3/2 (15)

T+x' +y! y

3

v (1+x'2+y'2)3/

Ixt

vr)é— = - :—‘ (1+x'2+ y'2)

Qr

Eél = - gl (1+x'2+ y‘2)

Achromaticity vs. Isochronicity

Incorporation of equations (15) into equations
(14) produces quite a mess. However, if we consider
only the implications as they apply to each order,
some simple conclusions can be derived. To first
order, we have

dx 3x
1 1

T (16
o C Q

Bpx1 _ Bx%

3E =P 3
[o] [e] o

Iscchiroaicity and achromaticity become equivalent
with no restrictions. Moving to higher orders, other
terms begin to appear and more restrictions need to
be imposed. At second order, we need to have a
first-order focus in both transverse planes, and the
planes need to be independent. In fourth order, we
must have unity magnification ia both planes.
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The partial derivatives of the final transport
variables with respect to the initial transport
variables are not necessarily the same as the

 first-order transfer matrix elements. The transfer

matrix elements are the partial derivatives evaluated
on the reference trajectory. When considering higher
orders of achromaticity and isochronicity, the
restrictions must also be imposed to an appropriately
high order. For example, at third order, the focus
must be good to second order. There must be no
second-order geometric aberrations.

Now we return to the original theorem. We prove
it by dinduction. Since it is established in first
order, the first part of our proof is done. Assume
that a beam 1line 1s isochronous up to order n-1.
Then the n'th order of the vector T will be given in
terms of the nth order of L and the"first-order terms
of the satrix product MN. If the nth order terms of
L vanish, those of the same order of T will also.
We define a vector T to be the derivative of the
trdasveras  Leansport variables with respect to g.
3ubject to the restrictions deseribed above, then T
will wvanish to nth order, and the beam line will be
achromatic. By the same reasoning, and subject to
the same restrictions, the vanishing to a given order
of T will imply the vanishing to the same order of L.

The longitudinal higher-order matrix elements
covered by this theorem include all except those
which are purely energy dependent. Thus terms of the
fora {t|e"), which may also depend on the mass of the
particle, are not included. Similarly, the
transverse matrix elements are only those which have
som2 nomentum dependence, plus those necessary for
the stated conditlons. Clearly, if all transverse
terms of a given order can be made to vanish, then

PR

all the terms of L to that order will vanish also.

An example of th&s theorem to second order has
been glven by Brown . He has devised a system where
all second-order transverse matrix elements can be
made to vanish simultaneously. The longitudinal
?eToad—order terms then also vanish, except for

T)€ ).
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