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Summary 

An achromatic system is one where the transfer 
matrix elements for the transverse coordinates do not 
depend on momentum. An isochronous system is one 
where the transit time of a trajectory through the 
system does not depend on the initial coordinates. 
1% is well known that a first-order achromatic system 
is also isochronous, except for pure momentum 
dependence. The converse is also true. This result 
is entended to higher orders. Conditions are found 
30 that f,~r a system whose chromatic terms all vanish 
up to a certain order the trans't A time will be 
independent of the transverse coordinates up the same 
0r:izr. Under the same conditions, the converse will 
also be true. 

Introduction -- 

The location in phase space of a particle 
passing through a magnetic optical system is usually 
speqifie'd with respect to a reference trajectory. 
The three spatial coordinates of a beam particle are 
the C,wo transverse coordinates x and y and the 
if i3tance s along the reference trajectory. 
Corresponding to these three coordinates are the 
three con jugate momenta PX' 

'8' 
and P3* In a 

field-free regFon, these three corn onents reduce to 
tile three Cartesian components of the mechanical 
momentum. 

In pr*s~!i;i::e, the two transverse momenta are 
replaced by the two direction tangents or "angles" xl 
and y'. The longitudinal position s is replaced by 
the longitudinal separation R from the reference 
particle. The sixth component is the fractional 
deviation 6 of the momentum From the reference 
momentum. The position and momentum of a paf1;ial.e ?t 
any point in a beam line can be expressed in terms of 
a six-componorlt vect3r X, where 

x’ 
X’ 

Xr y 

i, 

Y’ 
(1) 

3, 
6 

The components of the vector at any point in t,le 
beam line can be expressed as functions of the 
componen%s of the initial ray vector. Retaining only 
linear ter-rfl5 yi.el.d3 

Defining matrix elements T, U, etc. with several 
indices, a?d summing those indices also, the 
expansion may be extended to hi&er orders, 30 that 

X, I AX0 + TXoXo + UXoXoXo + . . . (3) 

The matrix ele,nenl;r of R are referred to as being of 
first scder; T -is second order; U is third, etc. 
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We may now define precisely what we mean by the 
terms achromatic and isochronous. A system is 
achromatic to a certain order if the final matrix 
elements for the transverse coordinates x, x', y, and 
Y' have no dependence on ri to that order. There may 
still exist nonzero geometric matrix elements, where 
the matrix element multiplies products of initial 
transverse coordinates. A system is isochronous to a 
certain order if the transit time difference has no 
dependence on the initial transverse coordinate3 to 
that order. For an ultrarelativistic beam, equal 
transit time is the same as equal path length. For 
lower energies, velocity differences must Se 
Lalzluded. The differences between the LWO appear 
first in second order. Our result applies strictly 
only to transit time differences. There may still be 
a dependence on power3 of 6 unmixefl witi other 
coordinates. 

First Orde_r 

We may use a bra and ket notation to indicate 
any particular matrix element. The columns of the 
first-order transfer matrix are also known as the 
characteristic rays, so that 

(xlxo) = cx(3) (xf 1x0) = c;(s) (4) 

(x1x;) = sx(s) cx’lx;, = s;(3) 

(x16) = dx(s) (~'16) = d;(s) 

IY,) = cp 

IJ.;, = sp) 

(YIY,) = cy!3) (Y' 

(yly;) = sp I,' 

The dispersion may be 
transverse chdirni:;;a:+i3tic 
the bend magnets as 

given in terms of the 
ram, and the angle CL of 

d<(s) = s<(s) 
1 

cKW da - cx(s) ; Sx(31 <ICI (5) 
J 

d;(s) = s;(s) cx(s) da - C;(S) 
i 

~$3) da 

The longitudinal separation is given as 

sx(s)dcr + 6 
I 

dx(s)da (6) 

From equations (5) and (6), we see that the 
stated theorem connecting achralaaticity and 
isochronicity is true in first order. The relation 
between the zaefficients can be written as 

ax ax aa. ax ak 
3-x 

-- 
=%x7-ax axI 

‘0 0 I) 

act ax’ aR aLI at -=----- 
a6 ax’ ax ax axI 

0 0 0 0 

(7) 

This form is highly suggestive of how the result may 
be extended to hiaher orders. 
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Relation toyCanonical Variables 

In a charged particle beam or spectrometer, one 
is interested in the behavior at the end as a 
function of the tra jet tory coordinate3 at the 
beginning. Since the time of transit may depend on 
the initial coordinates, it, l3 more convenient to 
parameterize the equations of motion In terms of a 
coordinate which has a unique value at the end of the 
system. For this purpose, we use the distance 3 
along the reference trajectory. 

Following Dragt’, we may then regard the transit 
time and the Hamiltonian as conjugate variables. A 
new Hamiltonian may be derived as the momentum 
con jugate to the distance along the central 
trajectory. It will be a function of three 
coordinates and their conjugate momenta. The three 
coordinates are the two transverse coordinates x and 
y, and the transit time t. The conjugate momenta are 
the two transverse momenta and the original 
Hamiltonian. In a static magnetic system, the value 
of the Hamiltonian is equal to the kinetic energy of 
the particle. 

The new dependent variable3 are completely 
canonical and satisfy Hamilton’s equations of motion. 
The Hamiltonian and the transit time now have no 
special status and are just one of three sets of 
conjugate variables. By a canonical transformation, 
they can be replaced by differences, T and E, with 
respect to the reference trajectory. 

Poisson Bracket3 ---- 

The complete set of variables for a particle 
trajectory is now x, p , y, p , T, and F. The symbols 
7 and :: indicate respe??tivelyYthe time separation of 
an individual trajectory and the reference particle, 
and the difference in energy for the same two 
particles. Since the variables are canonical and 
satisfy Hamilton’s equations, they also satisfy the 
fundamental Poisson bracket9 

[q,,qjl = 0 

[Pi,Pjl = 0 

(8) 

CS,,Pjl = sij 

Here we are interested in the Poisson brackets 
between or and the transverse variables. The brackets 
involving c and x and those involving I and y are 
between different coordinates. Those between T and 
p and between T and p are between a coordinate and 
axnon-conjugate momentXm. All e~l’lal zero. A further 
simplification occurs since we are working with a 
Static system. The transverse coordinates then have 
no explicit dependence on initial time difference, 
and the derivative of final time difference with 
respect to initial time difference is unity. 

The result can then be written as 

x 

a pi 

0 

a(x,Px,Y,P 1 a7 
(9) 

Ey 
--e-- _1--- 

pY 

= a(xo,PxolYo,Pyo) a(Pxo,xo~Pyo,Yo) 

We can define two vectors T 
write equation (9) in the fozm 

and Lc, and thereby 

Tc = MLc (10) 

The vector T represents the left side of equation 
(91, which ig the derivative of the transverse 
canonical variable9 with respect to E,. The vector L 
represents the derivatives of T uith respect to th; 
initial canonical transverse.varlables. The Matrix M 
is the local linearization In canonical variables of 
the mapping of the original space of transverse 
coordinates and momenta into the final space of the 
same variables. By Liouville’s theorem, the phase 
space volume is conserved and the determinant of M is 
equal to one. 

Relation to Transport Variable3 ~I_-___-___-__- 

Using the chain rule, the vectors T and L , can 
be expres9ed in term9 of derivatives wleh respgct to 
the transverse coordinates given in equation (1). 
The procedure ts more straightforward for the 
longitudinal vector Lc, so we consider that first. 

We define a new vector L, which contains the 
derivative9 of T with respect to the variables x~, 
“A, Y,? and y;. We now have 0. 

(11) 

where N 1s a four-by-four matrix. In lowest order N 
takes a particularly simple form 

i 
1 0 0 0 

‘i 
’ 0 

N”O o”l 
i 

l/p 0 
: 1 (12) 

(0 0 0 l/PO,/ 

The matrix is nonsingular in lowest order, which is 
its exact form when evaluate:1 at the origin. By 
continuity, It is then nonsingular in an open region 
containtng the origin. 

The connection between L, the dependence of time 
difference on initial transverse coordinates, and Tc, 
the dependence of the final canonical transverse 
coordinate9 on E, is then made easily. From 
equations (10) and (111, we have 

Tc = MNL (13) 

However, what we want is the dependence of final 
transport variables x, x', y, and y' on Initial E. 
From the standpoint of canonical variables a drift 
space has chromatic dependence. If we hold the 
initial p and p constant, and vary the energy, the 
final tr&sversg position will be affected. This 
occurs because the longitudinal momentum pt is 
changed and therefore the angle9 x1 and y’ are 
affected. In studying achromaticfty, we are 
interested in the dependence on energy when the 
initial angle3 xl and y’ are held fixed. 

To convert to transport variables, we must use 
the chain rule at both the initial and final points. 
We use it at the final point simply to transform to 
the desired var Lablea. We use it at the initial 
point because a derivative with respeect to E holding 
P fixed is different from a derivative holding x1 
fEzed. We therefore have three sets of partial 
derivatives. The first is the set of derivatives of 
the final canonical variables with respect to the 
final transverse transport variables. Then we have 
the transfer functions giving the transformation of 
the transport variables by the beam line. Finally, 
we must express the initial transport variables in 
terms of canonical variables. 
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The energy difference E is unchanged by all 
these transformations, but the functional dependence 
on it is not. In order to be explicit about the 
functional dependence, we add a subscript to the 
variable E, indicating the beginning or the end of 
the system. Derivatives with respect to canonical 
sets of coordinates are indicated by a subscript c. 
For the horizontal components of To, we then have 

ax1 ax, ax’ ajc, ay’ ax, 

%c =z&+Tqg+ x (14) 

apXl apxl ax; ax:, ap,, ax; ay; apx, ax; 

T C ‘ax;ax:,T’Jq-ay:,as+ax;a”o 0 

a0 ayf ayf 
‘Xl 1 0 aPXl 

+2-q-~~+i$eg+~ 

The derivatives of the transformations between 
canonical and transport variables are purely 
kinematic and can be expressed in terms of transport 
variables. For an ultrarelativistic beam, they are 
simpler in form, but the argument is unchanged. We 
then get 

&--- PX’Z --- 
J 1+xf2+y* 

2 (1+x’ 2 +y’ 2 ) 3/2 

apX PX’Y’ 
a?-=--” 

. . - - _ - 
(l+x’2+yf2)3’2 

axI K = - g (1+x12+ yf2) 

g = - F (l+x'2+ y'2) 

,4s’?romaticity vs. Isochronicity ----- 

(15) 

Incorporation of equations (15) into equations 
(14) produces quite a mess. However, if we consider 
only the implications as they apply to each order, 
some simple conclusions can be derived. To first 
order, we have 

ax 
1 

ax 

x-- q Ef (16) 
0 c 

apXt axI 

aEo 
q P& 

C 0 

The partial derivatives of the final transport 
variables with respect to the initial transport 
variables are not necessarily the same as the 
first-order transfer matrix elements. The transfer 
matrix elements are the partial derivatives evaluated 
on the reference trajectory. When considering higher 
orders 0 P achromaticity and isochronicity, the 
restrictions must also be imposed to an appropriately 
high order. For example, at third order, the focus 
must be good to second order. There must be no 
second-order geometric aberrations. 

Now we return to the original theorem. We prove 
it by induction. Since it is established in first 
order, the first part of our proof is done. Assume 
that a beam line is isochronous up to order n-l. 
Then the n’th order of the vector T will be given in 
terms of the nth order of L and the”first-order terms 
<of tile aatrix product MR. If the nth order terms of 
L vanish, those of the s?qe .~r*d.er of T will also. 
We define a vector T to be the derivatfve of the 
tr;i:isvrtr.ze transport variables with respect to e. 
Sllbject to the restrictions described above, then T 
will vanish to nth order, and the beam line will be 
achromatic. By the same reasoning, and subject to 
the same restrictions, the vanishing to a given order 
of T will imply the vanishing to the same order of L. 

The longitudinal higher-order matrix elements 
covered by this theorem include all except those 
which are purely energy dependent. 
forro (-rlZ), 

Thus terms of the 
which may also depend on the mass of the 

particle, are not incl4ed. Similarly, the 
transverse matrix elements are only those which hdvr! 
WJ!ld nomentum dependence, plus those necessary for 
the stated condittons. Clearly, if all transverse 
terms of a given order can be made to vanish, then 
all the terms of L to that order wiii v~rl;.~h .also. 

An example of th$s theorem to second order has 
been given by Brown . He has devised a system where 
all second-order transverse matrix element3 can be 
made to vanish simultaneously. The longitudinal 
secogd-order terms then also vanish, 
(TIE 1. 

except for 
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Isochronicity and achromaticity become equivalent 
with no restrictions. Moving to higher orders, other 
terms begin to appear and more restrictions need to 
be imposed. At second order, we need to have a 
first-order focus in both transverse planes, and the 
planez need to be independent. In fourth order, we 
must have unity magnification In both planes. 


