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Summary 

A kinetic equation derivation of the stochastic 
cooling Fokker-Planck eauation is discussed. The 
nation of correlation is introduced to describe both 
the Schottky spectrum and signal suppression. 
Generalizat%ns to norllinear gain and couplinq between 
degrees of freedom are presented. Analysis of hunch 
beam cooling is included. 

of particles in a storage ring, and the signal pro- 
duced is amplified and applied downstream to a 
kicker. The time delay of the cable ana electronics 
is designed to match the transit time of the parti- 
cles along the arc of the storaqe ring between the 
pickup and kicker so that an individual particle 
receives the amplified version of the signal it pro- 
duced at the pickup. If there were only a single 
partic:e in the ring, it is obvious that betatron 

Introduction 

From its corception by S. van der Meer, little more 
than a decade ago, the stochastic cooling technique 
has matured into a powerful tool which has given ele- 
mentary particle physics the highest available center 
of mass energies in storage rings. Durinq this brief 
period, stochastic cooling has been the subject of 
much experimental and theoretical work, which is too 
extensive to be chroricled here. The reader is 
directed to several review papersI- for a thorough 
account of its development. 

The theoretical analysis of stochastic cooling can 
he approached from a variety of perspectives with a 
fundamental dichotomy between the frequency domain 
(spectrum, bandwidth, filters) and the time domain 
(Fokker-Planck eauations). At the heart of the matter 
is the existence of two distinct time scales: One 
corresponds to the single particle cooling rate with 
characteristic times of the order of seconds. The 
other is that of coherent effects - signal suppression 
and instabilities - with times typically of the order 
of milliseconds. This "two-timing" of the physics is 
basic to an understanding of stochastic cooling and 
is implicit in most of the literature on the subject. 

Another concept which is of importance is that of 
correlation. It first manifests itself in the fre- 
quency variation of the Schottky power spectrum of a 
particle beam - this being just the frequency domairl 
statement of signal correlation in the time domain. 
4 further effect of correlation is the Schottky signal 
suppression or shielding of random particle fields 
observed when a stochastic cooling feedback system is 
turred on. 

In this note a kinetic equation formulation of 
stochastic cooling is used to clarify the interrela- 
tions among the various issues which have been 
highlighted. Recent developments which address cou- 
pling between degrees of freedom, gain nonliqearities, 
and the cooling of bunched beams will he reviewed. 
Signal suppression and enhancement from feedback sys- 
tens and aeneral machine impedances will also be 
discussed. 

Single Particle Interaction 

Stochastic cooling is the damping of betatron 
oscillations and momentum spread of a particle beam 
by a feedback s.ystem. In its simplest form, a pickup 
electrode detects the transverse positions or momenta 
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oscillations and momentum offset could be damped. 
The feedback system produces an inherently dissipa- 
tive self-interaction which derives from a large 
scale asymmetry between the pickup and kicker fields 
introduce@ by the high gain amplifier chain. 

Consider a single particle circulating in a ring 
at angular revolution frequency LU = 2n/T. The cur- 
rent at a longitudinal pickup can be described as a 
series of delta functions 

I(t) = e 5 d(t-to-nT) = g C einwctTtO) (1) 
n-02 n 

where to is some arbitrary time at which the 
partic!e is in the pickup. The signal prodllced at 
this p;ckup can he amplified and aoplied to a kicker. 
The signal at the kicker from all Seam particles will 
be of the Form 

k(t) = 6 F ; G(nwj,xj) e'nlaj(t-toj) (2) 

where G(12,xj) reoresents the electronic transfer 
character of the system at electronic frequency fl 
and particle energy Xj. Let us now focus atten- 
tion on a single particle, say the ith. It does 
not experience the signal at the kicker continuously, 
but rather samples it once every revolution period. 
The correction signal it receives is 

ki(t) = c 6(t-yiinTi) k(t) 
m 

(3) 

or expanding the delta function 

ki(t) = c c c G(nwj,xj) e 
i(nuj-mui)t 

. 
j n m 

-i(nw.t .-mwiyi) 
e J OJ (4) 

Since cooling is a slow process relative to the 
revolution frequency, the effect of the rapidly 
oscillating part of 4i is negligible unless 
there is a rapidly growing instability. The slowly 
varying part of the self-interaction ter1 is 

kiI = F G(nwi,xi) e-'noi(toi-Ti) (5) 

/self " 
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With a judicious choice of gain through filters and 
pickup design a dissipative, velocity dependent 
interaction is obtained. Because of the large gain, 
effects of pickup fields can be neglected. Similar 
sampling arguments can be applied to arbitrary parti- 
cle orbits; for example, synchrotron oscillations. 
For stochastic cooling it is this direct single par- 
ticle self-interaction which increases the phase 
space density. This is in contrast to electron 
cooling, where the relaxation process is driven by 
polarization effects. In stochastic cooling Polari- 
zation phenomena are important, but describe the 
interference of neighboring particles. 

Kinetic Equations for Non-Liouvillian Systems 

Particles receive successive kicks from each other 
which have long time coherence if the particles are 
near both in azimuth and velocity. This coherence 
leads to correlation of the particles' phase space 
coordinates. In a plasma physics context such cor- 
relation is expressed in terms of Debye screening of 
single particle random fields, the analogue of 
Schottky signal suppression. For plasmas the most 
self-consistent description of this shielding is 
given by the Lenard-Balescu equation, which requires 
the introduction of the two particle joint distribu- 
tion in addition to the usual one particle distribu- 
tion of Vlasov theory. It is this framework which 
is basic to a description of electron cooling. For 
stochastic cooling a similar set of equations can be 
derived, with modifications coming from the self- 
interaction term. 

For simplicity, we will first discuss one dimen- 
sional longitudinal cooling. (The essentials of the 
argument are unchanged if the variables are inter- 
preted as vectors.) The stage for our analysis is a 
ZN-dimensional ensemble space whose elements are 
vectors (qrP,'...'qn,Pn). Each vector represents 
a whole sys em of N particles with positions qi 
and momentum Pi. Consider an ensemble distribu- 
tion D(~,,P~,.,.., 
these 

q,,p ) 
N particles. "c 

describing a collection of 
onservation of the number of 

ensemble systems is expressed by 

A$+$. (to) = 0 (6) 

where 3 = Gl,,;, ,...,@J. As we have seen, the 
single particle dynamics are of the form 

Pi = $I G(qi,qj*Pj) pi = Q(Pi) (7) 

Define the one and two particle distributions fl 
and f2 by integrating 0 over 2N-2 and 2N-4 
variables, respectively. Define the two particle 
correlation by 

g(q1.P1,q2,Pp ,t ) ( = f, q1'Pl'q2'P*'t ) 

- fl(ql.Pl.t) fl(q2,p2d) (8) 

Integration of equation (6) over 2N-2 variables 
yields the stochastic cooling analogue of the 
Vlasov/Boltzmann equation: 

afl -+;1 afl 
at T 1% + (NJ $ Idq2dp2G(ql,q2.P2)fl(9i’P2’r) 

= - Y& flLyl.t) 1 
- (NJ 6 j-dq2dp2 G(ql,q2a2) 

(9) 

With the RHS set to zero we have the usual Vlarov 
equation. The first term on the RHS describes the 
direct self-interaction which increases phase space 
density. The second term on the RHS contains colli- 
sion effects (Schottky noise heating) which may be 
shielded. 

The two particle correlation equation is obtained 
by integrating equation (6) over 2N-4 variables, 
yielding 

E! 
at + :I F?$ + :2 Z$ 

+ N $++h3dp3 G(ql>+P3) fl(q3,P3Jj 

+ N $-&dP3 G(q2’q3+) 

- + 
1 [ 

Ghl,q2>P2) flhl+t 

- &- 
2 

fl(qI,pl,t) 

1(9S.P3.t) = 

f&q2,p2.t) 1 
f(q2'P2't) 1 

- N $ldqadP3 G(41tq3tP3) g(q2,P2sq3,P3J) 

- N 2 /dq3dp3 G(q2,q3,P3) g(q3+q1+t) 
(10) 

As in the Lenard-Balescu equation, terms of the 
order of 3-particle correlations have been dropped. 
In the plasma context, the justification is the 
existence of a small parameter (the ratio of inter- 
action energy to thermal energy) which orders the 
correlations. For stochastic cooling, as will be 
manifest in the signal suppression expression, this 
small parameter is the ratio of the damping rate to 
the revolution frequency spread. 

In equation (lo), the first two terms on the RHS 
describe the direct effects of beam Particles Per- 
turbing each other, including both polarization 
(feedback throuah the beam) and collision (Schottkv 
heating). The iast two terms describe how'existing 
coherence limits correlation growth. The 4 terms 
on the LHS effect mixing through frequency spread and 
enhance the interaction of particles neighboring in 
frequency. 
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Equation (10) can be solved under the assunotion 
that the relaxation time of the correlation g is 
fast on the scale of variation of fl. Phvsically , 
g describes th% buildup cf coherence; e.g,, single 
suppression or instability, which have rise times of 
a few milliseconds. The changes in fI, on the 
other hand, have a time scale of seconds. 

For simplicity let us take as our variables azi- 
muthal angle e 
Expand the gain 

and energy error x = (E-Eo). 

G(ei,ej,xj) = c Gn(xj) e 
in(ei-ej) 

(11) 
n 

and 

9 e17e2,x1,x2, ( t) = C s,(*~vx23t) e 
ik(el-e2) (12) 

Oefine 

H&x1) = N I dx2 G-Qb2) g&x1,x2) pi = C ~(ti ,  pi ;  -Ej ,  -j )  

j 

+ fbl) G&) (13) 

For a uniform beam, equation (9) yields 

$ (x,t) = - & (14) 

After Laplace transforming with f considereo con- 
stant, we have from equation (10) the integral 
equation 

H,j@l) = G+ !x,) f(X$E,$j 

af N 1 
J-qq I 

dx2 

H;Jx2) 
n * i(wI-w2r G+i(x,) (15) 

n+O+ 

EqL~(X1) = 1 + $j- 

Except for the details of the gain G, this is 
the integral equation of Lenard-ealescu. The solu- 
tion requires some complex plane gymnastics, too 
complicated to be described here. However, an iter- 
ative solution, assuming the second term on the RHS 
is small, yields on insertion into (14) the Fokker-‘ 
Planck equation 

af - = _ F 
at 

i 

& Glj;yyt) 

--&j Igi i$!2jlf]l (17) 

+ (principle value integrals) 

The exact solution yields the same result, without 
the principle value integrals. 

Multimensional Systems 

The above analysis can be generalized to all three 
degrees of freedom to include coupling, nonlinearity, 
and betatron oscillations. 

We take as our canonical coardinates three dimen- 
sional action angle variables, r and f'. The gain 
will now be a vector object 

5 L~-,$l ( $,I2 ) = C C ~~p2(~l,~21 e 
iEI*%+t@$ 

“,1 “,2 - - 
(18) 

which allows ir particular for nonlinear coupling. 
The gain 5 is defined through the relation 

(19) 

obtained by averaging the sampled signaled. The one 
particle distribution equation becomes4 

af 
0+-L 
3t aA n -- * c Gnwn!I 1) fo&t, 

A-. 
a1 

c.. I 
c R* Cl,L, 
n !T!. 

(20) 

where 

R nln2(IlIZ) 
f 

-- 
= N c J d13 si'_?(I113) * g~~(r213t) 

(21) 

and g satisfies the vector analogue of (IO). 
Without signal suppression, the Fokker-Planck equa- 
tion can be written in the form 

afO -=- 
at 

& - [F_(I) f(I)] 

where 

1 3 +-z- * D(I) . > 
2aI z 

f(I) = c G,,&,IJ 
n -- 

(22) 

j(i) = (2n) N c c - 
n n' 

/dI’ &-$-y~) &,““” &,+) - fo(‘l) 

(23) 

Note the n's%' - PI& argument of the delta 
function, whTch couples particles of different 
frequencies. This band overlap effect also appears 
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in the E suppression factors and will be discussed 
later. 

A few comments are now in order. The E factor 
is described by the same dispersion integrals that a 
Vlasov equation calculation would yield for coherent 
response. Analogously, the Debye shielding of a 
plasma can be derived from a test particle approach 
and then used to modify the Boltzmann equation with 
collisions. Secondly, for the most general gain 
function, either the Vlasov or correlation equation 
is infinite dimensional and contains all the pitfalls 
that have frustrated single bunch instability 
analvsis. Finallv. the correlation equation (10) 
does<not contain the self interaction term, and can 
be applied to any machine impedance. The related 
E-factor describes the deformation of Schottky sig- 
nals due to correlations developing between the beam 
particles. The Schottky spectrum of the Filth line 
is modified by 

f(w) + 9 
/E&l 

(24) 

Similarly, the tensor 0 which describes the multi- 
dimensional Schottky no?se will be modified by an E 
tensor with % 

-1 D&E -D-E -1+ 
255 25x 

This E tensor is most easily described through the 
associated Vlasov equation. Amplifier noise can be 
introduced through modification of g. 

Bunch Beam Coolinq 

In particular, the general formulation can be 
applied to bunch beam cooling. For longitudinal 
cooling the gain G is of the form 

GUu(JiJj) = L ws( J,) g (s) G(mwo+~ws!Jj)) 
m ~0 

x J,[ma) J,(-mm) 

where the Bessel functions J describe the synchro- 
tron orbits with sampling. When G,, is used to 
evaluate Q, interference terms will arise between 
the mu, Iiarmonics. This feature is a consequence 
of the nonstationary nature of bunch beam Schottky 
noise, which is not time translation invariant. 

Some approximation is necessary to solve the 
infinite dimensional suppression equation. For 
example, keeping only the dominant pole terms yields 

G 
E’(J) = 1 + nN 2 c 

Ju2(nm) 

s n n G(nwo+uiwS) 

and indicates the importance of synchrotron frequency 
spread for effective cooling. Note that the gain for 
all harmonics n enter into the EU suppression, 
weighted by J,,(n,/n). This interference effectively 
introduces the local particle density on the bunch 
in determining the optimum cooling rates. Numerical 
studies indicate that with synchrotron frequency 
spread sufficient for satellite band overlap and fil- 
tering of the coherent bunch signal, it is the high 

local particle densities, not bad rrixing,which limits 
bunch beam cooling rates. 

Schottky Band Overla; and Signal Suporession 

From equation (23) for 0, if it apparent that 
particles with different revolution frequencies W,W' 
can interact if nw = mti'. For n&m, this is the 
condition of Schottky band overlap. From a Vlasov 
approach which includes the local character of the 
feedback system, it can be shown that the E factor 
has a similar property.5y6 

Cons;der, for example, the longitudinal Vlasov 
muation 

-1-~ 

af 
x 

+.ai 
ae 

+ q.$ $ iwfo) = 0 (25) 

The localized interaction F for a feedback system 
is of the form 

F(e,t) = -2n ~;(e-ek)N dx' w' ^G(x',t-t') f(x',ep,t) 
I 

where ep and ek are the pickup and kicker 
azimuth, respectively. Note the a-function character 
of the kick, and that only the value of f at the 
pickup produces signal. The associate E is found 
to be of the form 

E(mw) = 1 

ia(e -e ) 

dx' N G(x',mw) +- (w'f) ei(m,l,!) 

where G is the Fourier transform of G". The cou- 
pling of the overlapping bands is now manifest. The 
sum can be expressed in closed form and is causal and 
localized spatially. Because of this locality, E 
exhibits large gain instabilities corresponding to 
feedback overdamping, which would disappear in a 
smooth approximation. In addition, if there is sig- 
nal suppression within a Schottky band, E(Q) 
requires signal enhancement outside the band. 
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