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Introduction 

The field of beam polarization in electron storage 
rings is making rapid progress in recent several years. 
This report is an attempt to summarize some of these 
developments concerning how to produce and maintain a 
high level of beam polarization. Emphasized will be the 
ideas and current thoughts people have on what should 
and could be done on electron rings being designed at 
present such as HERA, LEP and TRISTAN. An up-to-date 
review on similar subjects can be found in Ref. 1. 

Polarization in an Electron Storage Ring 

Consider a relativistic electron traversing a mag- 
netic field and getting deflected by an angle 9. The 
spin of the electron also sees the magnetic field and 
as a result rotates about the field by an angle (ay+l)e, 
where a= (g-2)/2 =0.00116 is the anomalous part of the 
gyromagnetic ratio of an electron and y is the relati- 
vistic Lorentz factor. Relative to the trajectory of 
the electron, the spin thus precesses by an angle aye. 

In a storage ring with planar geometry, all bending 
magnets have fields along the vertical direction 9. The 
electron spin rotates about y by an angle Zray as the 
electron completes one revolution. See Fig. l(a). This 
leads us to define 

spin tune v = ay = E/440.65 MeV (1) 

where E is the electron energy. Furthermore, if all 
electrons have different precession phases, the net beam 
polarization, provided the beam is polarized in the 
first place, will have to be along the F direction, 
i.e. 

net beam polarization direction fi = 9 . (2) 

It can be shown that for any storage ring geometry, 
there always exists a net beam polarization direction n. 
It is obtained mathematically by looking for a spin 
direction that repeats itself turn after turn as the 
electron circulates around the ring. In other words, 
A is given by the "closed"'solution of spin direction. 
We then define two auxiliary unit vectors m and H so 
that (n,m,i) forms a right handed orthonormal set. All 
three unit vectors precess according to the bending 
fields. The vectors & and 2 continue to prec'ess turn 
after turn while n repeats itself. For a ring with 
planar geometry, fi=$ and m and & lie in the ring plane. 

It was realized by Ternov, Lokutov and Korovina' 
and Sokolov and Ternov3 that, in a planar ring, synchro- 
tron radiation by an electron causes its spin to prefer 
to align with the magnetic field direction (-y for elec- 
trons and y for positrons) so that the lower quantum 
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Fig. 1. (a) Spin precesses rapidly as the elec- 
tron circulates around. (b) At the same time, 
the precession motion slowly spirals inward due 
to the radiative polarization mechanism. 

* work supported by the Department of Energy, contract 
DE-AC03-76SF00515. 

state is occupied more. This is a very interesting 
observation because due to this "radiative polarization" 
effect, the beam will slowly polarize itself. The net 
polarization theoretically will reach the level 

PO 
= 8/5J? = 92.4% 

with a polarization time constant 

(3) 

TO 

p2RCm3; 
= 99 sec E5CGeV5] 

where p is the bending radius of the bending magnets, 
2nR is the ring circumference. Again using a vector 
to represent the spin, we have the situation shown in 
Fig. l(b); the spin slowly spirals towards 9. For a 
3.7 GeV ring like SPEAR, To=14 min, i.e. it takes 14 
minutes for the beam to become polarized. Soon after 
the theoretical discovery, beam polarization was ob- 
served in several rings (VEPP-24 and AC03 around 1971, 
SPEAR6 in 1975). Things looked very encouraging. 

In Fig. 2, we show the polarization data measured 
for SPEAR7 in the energy range from 3.5 GeV to 3.75 GeV 
(v=8.0 to 8.5). One observes that the beam polariza- 
tion is lost when the spin tune satisfies some specific 
conditions that in general are given by 

v + kxv, + k v YY 
+ ksvs = k , (5) 

where vx,y s are the tunes for the three orbital motions 
-- the horjzontal betatron, the vertical betatron and 
the synchrotron motions, respectively, k,,y,s and k 
are integers. Equation (5) gives the spin depolariza- 
tion resonance conditions. As we shall see, the de- 
polarization resonances, which do not seem too harmful 
for SPEAR, become much more pronounced for rings of 
higher energies and what people have been doing is 
mostly to find clever ways to fight these resonances. 

In a planar ring, a fully polarized electron with 
spin along f will stay fully polarized. Synchrotron 
radiation by this electron of course will excite its 
horizontal betatron and the synchrotron motions which 
in turn causes the electron to experience perturbing 
magnetic fields, but these fields are all parallel to 
$ and do not cause the spin to precess away from 3. 
Once the beam is polarized, synchrotron radiation does 
not depolarize the beam even near the depolarization 
resonances. 

However, a real storage ring is not planar. The 
ring may be nonplanar by design -- we will see later a 
few such examples -- or even if it is planar by design, 
it may contain imperfections that distorts the planar 
geometry. In either case, depolarization resonances 
will be excited by synchrotron radiation. To see that, 
consider a nonplanar ring that has a vertical dispersion 
somewhere. A synchrotren photon emission at this loca- 
tion causes the electron to execute a vertical betatron 
oscillation. The vertical motion introduces the elec- 
tron to experience horizontal magnetic fields in the 
quadrupole magnets. The spin of the electron will then 
rotate around the horizontal i axis and be forced to 
precess away from the nominal direction q. Another 
mechanism of depolarization occurs when ;I#?, then even 
horizontal or synchrotron motions excited by synchrotron 
radiation depolarize the beam. Since synchrotron emis- 
sions are random events, this causes a diffusion of spin 
directions. This diffusion effect counteracts the 
radiative polarizing effect and at balance the beam will 
have a net polarization lower than 92.4%. The diffus,ion 
is the strongest near a depolarization resonance. 
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Fig. 2. SPEAR polarization normalized to P,,, = 92.4% versus beam energy. 

The reason the depolarization resonances are more 
enhanced for higher energy rings is that for a given 
distortion of the ring, the spin precession is directly 
proportional to t:he particle energy. If all rings have 
similar closed orbit distortions, the higher energy 
rings will suffer more. Very roughly, let us write8 

1 
P = 92.4% l+ (eE)2 

where II is determined by the amount of distortion of the 
ring with a=D for a perfect ring. Depolarization, 
being a diffusion effect, introduces into the denomina- 
tor a factor l+(aE)'. If we do the best to stay away 
from depolarization resonances and take P=85% for 
SPEAR, then for a similar closed orbit distortion, i.e. 
similar value for ci, we will get something like P=37% 
for 15 GeV rings like PEP or PETRA, 14% for 30 GeV rings 
like HERA and TRISTAN, and a mere 3% for 70 GeV LEP. 
Clearly something will have to be done to improve this 
situation. See Fig. 3. 
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Fig. 3. Rough estimate of the achievable vertical beam 
polarization as a function of storage ring energy. 
The solid curve is to scale from SPEAR data. The 
dashed curve is to scale from PETRA data after "harmonic 
matching" (see later). 

Longitudinal Polarization and Spin Transparency 

Before we describe how to cure the problem associ- 
ated with nonplanar distortions, let us mention another 
difficult problem that people are trying to solve. 
Namely one would like to have a beam with its polariza- 
tion along the direction of notion of the beam. Since 
the natural beam polarization is along 9, we need to 
somehow rotate the polarization into the longitudinal 

direction 2 at the point where 
beans collide. 

In fact, the solution to 
the two problems are closely 
related. The principle involved 
in solving both problems has 
been called the spin trans- 
parency conditions.' In this 
section, I will describe how the 
transparency conditions solve 
the longitudinal polarization 
problem and in the next section, 
I will describe how the same 
principle is applied to rings 
with imperfections. 

It may seem easy to design 
an insertion that provides a 
longitudinal polarization at 
the collision point. All one 
has to do is to install a few 
horizontal and vertical bending 
magnets on one side of the 
collision point so that the 
polarization is rotated from . 

y- to i-direction and then do a similar trick on the 
other side of the collision point to restore the polari- 
zation from i- back to q-direction. In the rest of the 
ring, polarization will be along $ as if nothing had 
happened. The idea is scherr.atically drawn in Fig. 4. 
The trouble with such a scheme is that one has forgotten 
about the depolarization effects which now must be con- 
sidered because the ring is no longer planar. 

Indeed, in a "spin rotator" scheme just described, 
the depolarization resonances will in general be greatly 
enhanced by the added insertion. The result typically 
is that the resonances become so strong that the beam 
polarization will be even much smaller than what Fig. 3 
promises. (This is true even if the rotator is per- 
fectly built.) What happens is that the rotator neces- 
arily contains vertical bending magnets. This means 
there is necessarily vertical dispersion in the ring 
and, as we explained before, synchrotron radiation 
causes spin to diffuse and polarization will be lost. 

The question is then how to have a spin rotator 
while at the same time it does not drive spin diffusion. 
Recalling that the spin diffusion comes fron emission- 
excited orbital oscillations, one obvious solution is 
to somehow mininize the orbital excitation due to syn- 
chrotron radiation (by minimizing the vertical disper- 
sion and by using weak and long rotator magnets). If 
we can decouple the orbital motion from synchrotron 
radiation, there will be no spin diffusion. This idea 
has been tried to some extend but was not very success- 
ful because it is sirnply an extremely difficult thing 
to do. 

Fortunately there is another way out. The trick 
is to let the orbital motions be excited by synchrotron 

J- 82 1SOIA. 

Fig. 4. A schematic design of a spin rotator. 
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radiation as much as they wish, but somehow design the of the ring. Take vfv, =k resonance for example. TO 
storage ring so that the spin precessions made in the eliminate this resonance, we have two sets of conditions 
troubled regions add up to zero as a net result. In to choose from. The first set, namely n,=O and n;=O, 
other words, by cleverly designing the storage ring, is simply the ccnditions for not exciting a horizontal 1 

the depolarization terms are arranged to cancel one an- betatron oscillation due to a photon emission at s. If 

other so that as an electron executes emission-excited this cannot be achieved, then we would demand the second 
orbital oscillations, its spin precesses away but always set of conditions, which essentially means the integra- 
comes back to the nominal direction whenever the electron tion of spin serturbation around one revolution vanishes. 
completes one revolution. Consequently there will be no At a first glance, the conditions listed in Table I 
spin diffusion due to synchrotron radiation. The con- 
ditions on the storage ring lattice for this to occur is 

are not practical at all. To completely eliminate de- 

called the spin transparency conditions. 
polarization resonances, it is necessary to impose the 

The design pro- transparency conditions at all s where synchrotron 
cedure that allows these conditions to be implemented in 
the storage ring lattice is called spin matching.q In 

photons can potentially be radiated. Since synchrotron 
radiation occurs at all bending magnets, the total num- 

practice, one just inserts the rotator as in Fig. 4 and 
then adjust quadrupole strengths in appropriate regions 

ber of transparency conditions must be very large, 

so that the transparency conditions are satisfied. 
namely lON, where N is the number of bending magnets. 

Fortunately these 10N conditions are often either 
It turns out that the strongest depolarization 

resonances are the linear ones including the integer 
resonances u=k (or more precisely, the synchrotron 
sidebands of the integer resonances, but us is usually 
very small) and the betatron sideband resonances 
~?v,,~=k. Yost of the transparency conditions worked 
out so far are aimed at eliminating these resonances. As 
an example, the transparency conditions for a storage 
ring that consists solely of horizontal and vertical 
bending magnets and quadrupole magnets are given in 
Table I. 

In Table I, s is the location where the transpar- 
ency conditions are imposed; nx,y are the horizontal and 
vertical dispersion functions and n'x,y are their deri- 
vatives; n, m and 0 are the spin vectors defined before; 
G is the quadrupole gradient; Bx,y and $x?y are the 
betatron functions and phases; C is the circumference 

TABLE I 

trivially satisfied or they degenerate into a much 
smaller number of conditions. For a planar ring, for 
instance, they are all satisfied because ny=3, n$=O 
and m and i are orthogonal to 9. For a rotator ring as 
shown in Fig. 4, it can be shown that there are only 10 
nontrivial conditions to fulfill. The transparency 
conditions make the ring design difficult but certainly 
does not make it impractical. 

Before going on to discuss rings with imperfections, 
it is worthwhile to mention one interesting related 
development: With the recent advent of mini-S* lattices 
in various storage rings, the detector solenoids are 
deprived of having compensating solenoids adjacent to 
them. Although it helps the luminosity, this way of 
operation is very harmful to the beam polarization. So 
the question is how to make a detector solenoid spin 
transparent. It was foundlo that the denolarization due 

1 
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to the detector solenoid car. be re- 
moved by inserting compensating sole- 
noid at strategic locations. Those 
locations are away from the interac- 
tion region so that the compensating 
solenoids do not interfere with the 
mini-S * installations. In addition, 
they are dispersion free and they 
have the property that the trajectory 
of a particle executing free horizon- 
tal betatron oscillation has equal 
slopes at those locations as at the 
detector solenoid. By implementing 
such a spin matching scheme, the de- 
tector solenoid is made spin trans- 
parent. 

Ring with Imperfections 

Now let us turn to the case of a 
distorted ring. Since in this case 
the depolarization comes from unknown 
imperfections, the 10N transparency 
conditions do not degenerate. To 
eliminate depolarization, therefore, 
one needs 10N knobs and the problem 
again seems impossible to manage. 
To see how this difficulty is over- 
come, note that the depolarization 
caused by imperfections is relatively 
weak -- at least compared with that 
caused by a rotator and only as bad 
as Fig. 3 shows. Consequently, the 
ION conditions only need to be approx- 
imately satisfied. An inspection of 
the transparency conditions shows that 
there is indeed a way to do just that. 

Again. take the vi-v,=k resonances 
for example. The two integral condi- 
tions in Table I of course really mean 
2N conditions because the integrals are 
functions of s. However, if V+V~ is 
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exactly equal to k, the integrals become independent of 
s and the 2N conditions reduce to 2 conditions. This 
means two knobs are sufficient to eliminate the reso- 
name, at least in principle, when the resonance condi- 
tion is exactly fulfilled.' This means that not all of 
the 2N knobs are equally sensitive and, even somewhat 
away from a resonance, the same two knobs will still do 
the job approximately. To optimize beam polarization, 
therefore, one simply locates the dominating nearby 
depolarization resonances, tweaks the right knobs in 
the right direction and then the beam polarization will 
greatly improve. The question left -- admittedly a 
highly nontrivial one -- is what are the most effective 
knobs for each resonance. A number of clever schemes 
have been suggested.q One of them'*" has been applied 
to PETEA and it worked like a charm. 

To see how it worked, let us assume ny has been 
carefully minimized around the ring. An inspection of 
Table I then shows that the harmful depolarization reso- 
nances are v+ v,=k and v=k, and they are driven be- 
cause m and i are not orthogonal to $, or equivalently 
;1 is not parallel to +. The idea is therefore to cor- 
rect fi so that it becomes parallel to y. The most 
effective knobs to do so are the m-th Fourier harmonics 
of the vertical closed orbit, where m is the nearest 
integer to the spin tune v. The PETBA team had four 
knobs that corrects the 37th and the 38th sine and co- 
sine harmonics (v x 37.6). The needed corrections 
hardly changed the over-all vertical closed orbit and 
yet by tweaking them, beam polarization has dramatically 
improved from 20% to 80%. It is estimated that t? devi- 
ates from 9 by -lo before correction and -0.3' after 
correction. Figure 5 shows the measured beam polariza- 
tion as a function of two of the harmonics. Polariza- 
tion is obviously very sensitive to these knobs. 

The technique used on PETEA has been called the 
harmonic matching." Applying it to a range of beam 
energy, the beam polarization obtained is shown in 
Fig. 6. Note that there is still strong depolarization 
much closer to the resonances. This presumably is 
partly due to incomplete harmonic matching, but more 
importantly also due to the ny effects. 

If we extrapolate the PETRA data to higher energy 
rings with imperfections, assuming a similar harmonic 
matching is applied and using Eq. (6), we find the 
dashed curve shown in Fig. 3. 

f 
36 
2 
aw 
-4 
< 

2 

I 1 I 
-4 -2 0 2 4 

3-83 38’” SINE 
3504*5 HARMONIC 

-3 -2 -I 0 I 
38'" COSINE 
HARMONIC 

Fig. 5. Beam polarization versus the 38th 
harmonics of the vertical closed orbit distor- 
tion in PETEA. The harmonics are in arbitrary 
units. The parameter A is the asymmetry meas- 
ured by the polarimeter; A= 10% corresponds to 
about 70% of polarization. 
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Fig. 6. PETR4 polarization after harmonic matching. 

The Problem of Energy Spread 

So far, the situation looks rather encouraging; the 
longitudinal polarization can indeed be provided by a 
rotator insertion and imperfections can be effectively 
corrected by harmonic matching. However, these develop- 
ments are based on linear theories. Life becomes diffi- 
cult when nonlinear effects are involved, and one nasty 
nonlinear effect is that associated with having a large 
spread in particle energy (and therefore in spin tune). 
Since the energy spread is larger for higher energy 
rings, this problem is expected to be most serious for 
LEP. 

Nonlinear effects excites the nonlinear depolariza- 
tion resonances. In particular, a finite spin tune 
spread excites synchrotron sidebands of all linear reso- 
nances. One indication of this already happening at 
SPEAR was in fact shown in Fig, 2: the linear v-v,=3 
resonance has two synchrotron sidebands on its each side. 
The widths of these sideband resonances can be related 
to that of the v -vx =3 resonance by Bessel functions 
using a frequency modulation analysis.12-14 From such 
an analysis, one can define an enhancement factor d 
which is essentially the ratio of the total width of all 
the Bessel function synchrotron sidebands to the width 
of the linear resonance located at the center. Taking 
into account of this depolarization enhancement, Eq. (6) 
becomes something like 

P = 92.4%' 1 
l+(l+d)(aE)2 * (7) 

An accurate estimate on d is very difficult. Here 
let me just show in Fig. 7 the result of one such 
attempt.13 According to Fig. 7, HERA is not going to 
suffer from the multiple synchrotron sidebands up to 
40 GeV or so, while LEP beyond 70 GeV looks rather 
dismal. For instance, we find d z 10 for LEP at 80 GeV. 
If we take the dashed curve of Fig. 3 and take into ac- 
count of the enhancement, the polarization drops to -3%. 

What can we do to improve this situation? One way 
is to do a much more precise harmonic matching so that 
the coefficient J in Eq. (7) is reduced by an order of 
magnitude. Another ideal3 was to use a special-purpose 
wiggler (the "dipole-octupole" wiggler15) to curtail 
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Fig. 7. A rough estimate of the enhancement factor d 
(log scale) as a function of beam energy for HERA and 
LEP. 

the energy (spin tune) distribution of the beam. Still 
one more suggestionlG is to insert a "spin chromaticity 
corrector" into the ring. Such an insertion consists 
of horizontal and vertical bending magnets and requires 
the implementation of the transparency conditions, just 
like the rotator does. After it is inserted in the 
ring, the spin tune of an on-momentum particle is still 

. a-c, F but for an off-momentum particle, the spin tune is 
not a(y,+Ay) but some value closer to ayo. This device 
thus reduces the spin tune spread for a given energy SP- 

read. It is conceivable that a spin chromaticity correc- 
tor can be incorporated into a rotator. 

If all ideas fail, there is still one last resort. 
It employ a powerful scheme called the Siberian 
snakes.l' For this scheme to work, we need a "double 
snake" scheme in which the storage ring looks like that 
sketched in Fig. 8. There are two opposite regions 
where the snake insertions -- again consist of hori- 
zontal and vertical bending magnets -- are installed. 
With such a snake scheme, all particles have spin tune 
I, =1/2 irrespective of their energies. As a result, 
there is no spin tune spread and therefore no depolari- 
zation enhancement. There are complications involved 
in a ring with double snake, however. First of all, 
the transparency conditions need to take care of both 
insertions. Secondly, one half of the ring (say, the 
half with n=$) will have to be made up of sharp bends 
while the other half (with n=-q) ring is made up of 
smooth bends, as shown in Fig. 8. This is so that the 
radiative polarization -- that provides the beam polari- 
zation in the first place -- does not have a zero net 
effect. At present, it is not yet clear how these 
complication weigh against their potential benefits 
and this remains an unanswered question for LEP as far 
as beam polarization is concerned. 

/ 
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Fig. 8. A double-Siberian-snake ring. The 
two snake insertions are different -- one 
is of the "first kind," the other of the 
"second kind." 

Beam-Beam Depolarization 

2387 

Another important nonlinear depolarization mechan- 
ism is that due to the beam-beam collisions. As two 
beams collide, the very nonlinear space charge force 
kicks the spins as well as the trajectories of particles. 
Both the direct kicks on spin and the beam-beam excited 
nonlinear betatron motions are harmful to beam polariza- 
tion if the beam intensity is high enough. The relevant 
nonlinear depolarization resonances are those involving 
ux and vy in Eq. (5). 

To get an indication of the order of magnitude of 
the problem, one can insert a linearized beam-beam force 
in an otherwise spin-t:;nsparent ring to see how much it 
makes the ring opaque. Such a calculation involves a 
linear theory in which the beam intensity is specified 
by the beam-beam tune shift parameter AVBB. The result 
of this calculation for PETRA predicts depolarization 
if AvBB > 0.01, which is about a factor 3 lower than 
what is required for a good luminosity. 

Since this calculation is based on a linear model, 
and all linear depolarization effects can in principle 
be eliminated by spin matching techniques, the actual 
situation may not be as bad. Indeed, there are profound 
theoretical worksl'pl' saying that the real beam-beam 
depolarization is not -0.01 but -0.03, right where it 
is needed for luminosity. 

Figure 9 shows the experimental results taken at 
PETRA.i.ls It demonstrates that it is possible to keep 
the beam polarization while maintaining a respectable 
luminosity. At A“JBB - -0.023, a polarization of 80'6 was 
measured. On the other hand, as the beam intensity 
increases toward a higher luminosity, the beam polari- 
zation does suffer. In other words, the beam-beam 
depolarization is not bad, but bad enough to hurt. 

It has been suggested" that it might be possible 
to impose a set of transparency conditions to make the 
ring spin transparent against the beam-beam perturbation. 
Such conditions would look dissimilar to those shown in 
Table I because they have to fight against nonlinear 
resonances. On the other hand, they are applied only at 
one location -- the collision point -- of the ring. 
Yeanwhile, progress is being madezl on the theory of the 
beam-beam transparency conditions. 

i 
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Fig. 9. Beam-beam caused depolarization vs 
beam intensity measured at PETRA. 9 is the 
luminosity. 
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Polarimeter 

The problems discussed so far are related directly 
to the St&rage ring. We now turn to the techniques 
devleoped for measuring and for flipping the beam 
polarization. 

The data for SPEAR in Fig. 2 and for PETRA in Figs. 
5 and 6 are both taken by Compton polarineters.7y22 The 
device, sketched in Fig. 10, utilizes a laser that pro- 
vides circularly polarized light in the visible fre- 
quency range. One shines the laser light against the 
electron beam and collects the Compton back-scattered 
photons. The up-down asymmetry of the back-scattered 
photons, now in the x-ray range, is directly related to 
the vertical polarization of the electron beam. The 
electrons that scatter the laser photons are knocked 
out of the acceptance of the ring. The counting rate is 
about 100 counts per second. To measure beam polari- 
zation to an accuracy of -1X, it takes -2 minutes. 

Fig. 10. A compton lolarimeter. 

The back-scattered photons have an up-down angular 
spread -l/v. For a 50 GeV ring, this angle is -10m5 
rad, which is rather small, but by properly arranging 
the detector geometry as well as the beam optics, it 
should be a straight-forward matter to extend the 
Compton polarirneter technology to HERA, TRISTAN and 
L,5P.7,12 

The Compton polarimeter can also be used to detect 
longitudinal beam polarization. The cross-section of 
the back-scattered photons no longer has an azimuthal 
angular dependence (i.e. up-down asymmetry), but its 
dependence on the polar angle is different for the two 
helicities of the laser light. By measuring the differ- 
ential cross-section of the back-scattered photons while 
flipping the helicity of the laser light, the longitudi- 
nal polarization of the beam can be extracted. Again, 
the technique does not look fundamentally difficult if 
and when applied to the higher energy rings. 

Spin Flipper 

One question that has yet to be answered is how to 
provide longitudinally polarized beams of both helici- 
ties. It is easy to imagine that, if this is to be 
accomplished by the spin rotator, the rotator design will 
have to be very involved. It turns out that it might be 
possible to get around this problem by a neat technique 
developed at VEPP-2M.23 The way it is done is to apply 
a high frequency (around 8 MHz) perturbing magnetic field 
to the polarized beam and slowly sweep the frequency vd 
through a depolarization resonance. If the sweeping 
speed is chosen properly, the beam polarization will make 
a beautiful 180° flip after the sweep is completed. In 
VEPP-2M , the perturbing magnetic field is provided by a 
weak solenoid, while the depolarization resonance is 
v - :v, = v For the higher energy rings like HERA and 
LEP, the pderturbing field is most likely replaced by a 
transverse magnetic field but otherwise a very similar 
technique can be used to flip the beam polarization. 

If this technique works out and there is no obvious 
reason why it does not, a spin rotator needs to provide 
only one helicity. The other helicity can be obtained 
by the spin flipper. After the beam polarization is 
flipped, the natural radiative polarization will act 
against the beam polarization, but it takes one polari- 
zation time for this to take place and, in the meantime, 
the beam does process the other helicity. Another ad- 
vantage of this scheme is one can selectively flip the 
polarization of one of the two beams or to have different 
polarizations for different bunches in the same beam. 

summary 

To sum up, the over-all situation is a healthy one: 

(1) The linear theory of beam polarization and de- 
polarization is substantially understood. Thanks to the 
transparency conditions proper design of spin manipula- 
tors (rotators, Siberian snakes, spin chromaticity cor- 
rectors, etc.) becomes possible and corrections for rings 
with imperfections have been reduced to a problem of 
finding the most effective correction knobs. 

(2) Experts are working on the nonlinear theories. 
Their results so far are encouraging. Nonlinear de- 
polarization effects associated with large energy spread 
seem to be a problem for LEP'but there is no lack of 
clever schemes to choose from for defeating these effects. 
The heam-beam depolarization is only marginally harmful 
and there are again preliminary ideas of how to fight it. 

(3) Polarization monitoring seems to require only 
a reasonable extension of the present technology. 
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