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SUMEWRY 

The instabilities of an infinitely long and azi- 
muthally symmetric annular electron beam propagating 
along an external applied magnetic field are investi- 
gated using the fluid-Maxwell theory. Unlike the 
treatment in the conventional diocotron instability, 
full electromagnetic perturbations have been empha- 
sized and no approximation has been made such as kll - 0 
and o--ckB in the macroscopic cold fluid description. 
There have been found two distinct and different insta- 
bilities depending on the value of doppler-shifted 
eigenfrequency w-ckB. The diocotron instability domi- 
nates in the low frequency region while cyclotron 
resonance perturbation plays a major role in the high 
frequency domain. In the case of a sharp boundary 
density profile, the growth rates versus different 
wavenwnber k are shown for both instabilities in the 
beam parameters of our interest. 

I. INTRODUCTION 

The diocotron instability of a hollow electron 
beam has been known for a long time since the early 
crossed field microwave magnetron. For an annular 
electron beam in the cylindrical geometry, Bunemanl has 
considered the diocotron instability in the regime of 
+b =wc while Levy2 has examined the instability in the 
case of low beam density wpb < wc, where Wpb and q 
stand for the electron plasma and cyclotron frequency 
respectively. Since then numerous theoretical work 
have been done and most of them consider only pertur- 
bations with sufficiently long wavelength. Experi- 
mentally3, there are some evidence that the lower order 
diocotron modes have been found in the damaged plate 
after the target interaction of the annular electron 
beam. RecentlY4, the filamentation instability (P. > 2) 
of an annular electron beam along a uniform magnetic 
field has been studied by using the Vlasov-Maxwell 
equations. Here, a more complete full electromagnetic 
treatment of the fluid-Maxwell theory is conducted 
without any approximations which have been made pre- 
viously. We want to consider the perturbations not 
only in azimuthal (L $ 0) but also in axial direction 
(k, + 0). In addition, the model developed here will 
apply to all range of beam density and other beam para- 
meters except the requirement of a thin hollow beam, 
Most importantly, we want to examine the validity of 
the previous w -ckg assumption in the treatment of the 
conventional diocotron instability. 

II. EQUILIBRIUM AND ASSUMPTION 

The equilibrium configuration consists of a 
cylindrically symmetric annular electron beam that is 
infinite in the axial direction and aligned parallel 
to a uniform applied magnetic field. The radial 
thickness of the hollowing beam denoted by 2a is 
assumed small in comparison with the mean equilibrium 
radius RO. The beam under consideration is character- 
ized by the charge q, mass m, axial velocity c6 and 
density profile n respectively. The flow of electrons 
can be considered laminar provided that the beam 
current is much smaller than the AlfGen-Lawson space- 
charge limiting current’ 

I < 17000 By 

Furthermore, the beam electron motion is taken to be 
paraxial so that the axial velocity is very large 
compared to the transverse velocity and is considered 
to be a constant. We introduce a cylindrical polar 
coordinate system (r, 8, z) with the z axis coinciding 
with the axis of symmetry. Analysis of beam dynamic 
properties is based on a macroscopic cold fluid model. 
The equation of electron and momentum conservation for 
the electron fluid can be expressed in the relativistic 
form as 

an/ at + v* (nV) = 0 - (1) 

(a/at + 1-v) 1 = $ (g + v x B/C) - - (21 

where n(x,t) and V(x,t) are the density and mean -- 
velocity of an electron fluid element, E(x,t) and 
B(x,t) are the electric and magnetic fi;lds respec- 
ti:ely. y and B are the standard relativistic quan- 
tities and c is the speed of light in vacuum. The 
self-induced electric and magnetic field can be re- 
lated to the beam density and current by the Maxwell’s 
equations. 

In the steady state (a/at = 0) the beam is assumed 
azimuthally symmetric (3/39 = 0) and infinite long and 
uniform in the axial direction (a/az = 0). The 
equilibrium force balance due to electric and magnetic 
field in the radial direction gives the angular veloc- 
ity t+,(r) of an electron fluid element in slow 
rotational equilibrium. 

where LL;lb = 4n n q2/ym and w = q B /c~ are the 
electrob plasma frequency sqSare an ! cyclotron fre- 
quency respectively, and BO is the guided magnetic 
field. For a thin beam, although Wb(r) is weakly 
dependent on r but introduces the diocotron instabilitY 

III. STABILITY ANALYSIS 

We assume, without loss of generality, that all 
the perturbed quantities have the following wave form 
with the sinusoidal time dependence and spatial 
variation 

sO(x,t) = 60(r) exp li(l?B + kz - ut)] (4) 

where the oscillating angular frequency w is assumed to 
be complex with Im(w) > 0, L is the azimuthal harmonic 
number and k is the propagation wavenumber in the axial 
direction. We use the, linearized fluid-Maxwell 
equations to investigate the general electromagnetic 
perturbations for 9. ) 1 and any arbitrary wavenumber k. 
Let us choose the transverse magnetic (TM) modes such 
that the magnetic field lies in the cross-sectional 
plane. Since all the transverse fields for the TM mode 
can be expressed in terms of the z-component of the 
electric field, the determination of the transverse 
fields therefore can be expressed in terms of 6E, 
according to 

6Bt = (u2/c2 _ k2)-l i ?!s 
c z x CtGEz 

6Et = (w2/c2 - k2)-l vt (aSEZ/az) 
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From the perturbed Maxwell equation, it is straight- 
forward to express, after some algebraic manipulations, 
that the relationship between the perturbed field 6Ez 
and the source terms 6n and 6J Z 1 

(5) = 4a ik(q 6n - + 6Jz). 
kc 

where in and 6Jz can be obtained by solving a set of 
first order perturbation equation from equations (1) 
and (2) and expressed in terms of 6E,. Therefore, 
equation (5) together with boundary conditions on the 
field component represented by the scalar function 6Ez, 
specifies a two-point boundary eigenvalue problem which 
can be solved numerically. For the special case of a 
square density profile for the hollow beam, the above 
mentioned procedure, with some straightforward but 
tedious algebraic manipulations, rewrites equation (5) 
in the final form as 

+ -& [r(l - Sl) & ]- $ (I-Sl) - (k'-+g)) 
c2 

JEZ (r) 

=; S2[G(r-RO*a) - 6(r-RO-a)ldE,(r)+ + S &EZ(RO)(6) 
0 3 

with substitutions 

sl _ $b 2 (1 - $1’ 
“0 - wc 1 - ($I2 

2 
w pb s2z- 2 wc (1 - $2 

(0 14s I2 

(7) 

s3 3[ ( ck -2uB)Ck + f- ]( Rg )2[1+ 
hJWb 

"0 0 (c!q2 - u 
2 I@) 

where R s w - tub(r)- ck8 and RO s w - eWb(RO) - ckB. 
The contribution to the right hand side of equation (6) 
becomes two delta function at the sharp boundaries and 
one additional term which is assumed inversely pro- 
portional to r only. The rest of the term is evalu- 
ated approximately at RO for a thin annular beam; the 
self-induced magnetic field Be has been neglected in 
deriving equation (b) and Wb<<Wc has been used. The 
piece-wise solutions for the homogeneous equation of 
equation (6) can be expressed as the eigenfunction is 
continuous at each boundary and vanish at r = 0 and 
r=m 
that 6, 

where the conducting wall has been removed so 
= m. The effect of the delta function can be 

considered by multiplying both sides of r and inte- 
grating over the infinitesimal interval from r(l-c) to 
r(l+c) with E + 0 in the vicinity of r=Rl and R2 
respectively. 
following 

The dispersion relation is obtained by 
the steps from 

the final 
Eq. (88) to Eq. (99) of Ref.6, 

results can be expressed by a 2x2 matrix as 

*11 Al2 

A2l A22 
=o 

for L = 1 

(10) 

with the substitutions 

s4E 2 R1 7 1 R1 R1 S3 
2 - -[S1+S2(Rl11 7 R; en q 1-s 

RO 1 

s se s3 R2 
5 1~ -[?-Sl-S2(R2)]i> Pn r l-s . R2 s3 

0 0 0 1 

It is important to note that Sl and S3 from equations 
( 7) and (9) are independent of r. However, S2 of 
equation ( 8) is a function of r through the variation 
of wb(r). Similarly, for L 2 2 

A1l=Rl '-I S2(Rl)-R;-' S6 

A12=Rl -'-I [2-2Sl+S,(R,)]-R,"-1S6 

A,l=R~-'[2-2Sl-S2(R2)]+R;-1s7 

-9,-l 
Az~=-R~ 

4-l 
S~(R~)+RO S7 

(121 

where the substitutions have been used 

s6= 
S3[S2(Rll+(1-Sll (~-l)/~l 

(Fz-l)(l-sl)+s3 

s7= 
S3[S2(R2)-(1-Sl) (e+l)/el 

(e2-l)(l-s,!+s3 

IV. NUMERICAL RESULTS AND CONCLUSIONS 

(a) Diocotron instability 
The growth rate and Doppler-shifted real 

frequency, both have been normalized to the beam plasma 
frequency, are plotted versus normalized axial wave- 
number in Fig. la and lb respectively for the azimuthal 

CKlopt, 

Fig. la. The diocotron growth rate versus wavenumber 
for different azimuthal number. The beam parameters 
are Y=2, a/Rg = .OS, upbRg/c = .OS, upb/ac = .5 
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Fig. lb. The real doppler-shift real frequency of the 
diocotron instability corresponding to Fig. la 

mode @l and a few higher modes. Note that it is always 
stable in the limit of k=O. Re(w-ck8) remains very 
small which characterizes the low frequency diocotron 
perturbations. The second term on the RHS of Eq. (6) 
becomes very important especially for large k. If 
w=ckB is applied to Eq. (6), then Eq. (6) becomes7 
Eq. (2.6.20) of Davison of the conventional dibcotron 
instability. The symmetry, with respect to k, can be 
seen except those near k=O. As the value of RO 
increases, Eq. ( 9) involving the non-symmetric "rl 

b/c 
erm 

with respect to k becomes important. The results 
obtained agree qualitatively to those using the Vlasov 
system of equations to obtain a kinetic description of 
the situation. 

(b) Cyclotron resonance instability 
It is clear that the diocotron instability 

occurs whenever w - ck8 or R << wc as demonstrated in 
(a) . Nonetheless, in the high R regime (i.e., R-w,), 
there is a distinct and different instability called 
cyclotron resonance oscillation. The dispersion re- 
lation of Eq. (10) is solved numerically for the 
growth rate and Doppler-shifted real frequency which 
are illustrated in Fig. 2. Unlike the diocotron 
instability, the growth rate and Doppler-shifted real 
frequency are very large. The instability is almost 
independent of L, y, a/R0 and o bRO/c. Since R is very 
large, the second term on the RR S of Eq. (6) can be 
ne lected in the calculation. 
Ifly - /qI, Re(w) and ckB 

In order to keep 
could have almost the same 

magnitude but different signs, (i.e., w--ckB). The 
cyclotron resonance wave has been observed in the 
particle simulation and applied to Texas collective ion 
accelerator experimentally. It has not been seen 
because of the approximation w I ck8 in the treatment 
of the conventional diocotron instability. 
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Fig. 2. The growth rate of cyclotron resonance wave 
versus wavenumber for the beam parameters similar 
to Fig. 1 
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