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Summary 

Widenings of a vacuum chamber may function as res- 
onant cavities, which can promote longitudinal instab- 
ilities. We have reexamined the stability question in 
such a situation, following earlier work of Keil and 
zotter. We solve the full linearized Vlasov-Maxwell 
equations for a model vacuum chamber, using an improved 
computational method which is efficient for virtually 
any choice of geometrical parameters, in particular for 
large ring radius R. Because of mode coupling induced 
by the corrugations, the dispersion relation that de- 
termines the growth time of an instability involves an 
infinite-dimensional impedance matrix, rather than the 
usual single impedance. We give a method to compute 
the growth time T, and find an explicit formula for r 
as an oscillating function of the mean revolution fre- 
quency R, with sharp minima at points where the real 
part of a cavity resonance frequency is equal to an 
harmonic of Q (plus a small shift). An illustration 
for parameters of interest in ion beam fusion is 
included. 

Equation for cavity mode coefficients with Vlasov 
self-consistency 

As in Ref.1, the vacuum chamber is modeled as a 
straight pipe of radius b with widenings of radius d 
and length g; the widenings appear with period 2nR in 
the longitudinal variable s. The beam has radius a and 
is uniform over a cross section. With the assumption 
of azimuthal symmetry of fields and standard resistive 
wall boundary conditions, the longitudinal Vlasov equa- 
tion (linearized about a uniform beam configuration) 
and the coupled Maxwell equations are subjected to a 
Laplace transform in time and a Fourier transform in z.. 
The result is an infinite linear system of equations 
forz (p), f (p), and D (p), where p = -iw is the 
LaplaTe tran?form varia&e; A (p) and f (p) are coeff- 
icients in Fourier developmen% (periodm2nR) of the 
perturbed electric field and distribution function, 
respectively, along the axis of the tube, while b p) 
is the coefficient in a development (period 2g) o I the 
electric field in the cavity region (r > b, -g/2 < z 
< g/2). The equations are generalizations of those of 
Keil and Zotter, Ref.1, and we follow their notation. 

The conventional dispersion relation for determina- 
tion of growth rates is obtained by eliminating f and 
5 to get a set of equations for the ?i alone. AnDin- 
f?nite-dimensional impedance matrix apEears as the co- 
efficient of the plasma dispersion function in those 
equations. As we shall explain elsewhere, the usual 
single-impedance description can be retrieved, but it 
is hard to judge the error in making that reduction. 
We prefer a different approach in which f and x are 
eliminated to get an equation for 5 alo&!. Somemof the 
advantages of the 5 equation were r&ognized by Keil 
and Zotter; we find further advantages in extending 
their work. When the cavities are fairly deep (say 
b/d < l/2), the Fourier modes of the field they contain 
are not far from being the normal modes of the system. 
Mathematically, that means that the matrix of the i? 
equation is close to being diagonal, and that the off- 
diagonal matrix elements may be treated by a perturba- 
tion method. The K equation is nearly diagonal if 
b 2 d, and should be used in that limit. 

To simplify notation in this brief report, we ne- 
glect resistivity of the chamber walls, except on the 
cylindrical surface of the cavity. By using a general- 
ized Fourier series with anharmonic wave numbers, one 

can treat the cavity end walls as well as the cylindri- 
cal surfaces, and derive equations with full account of 
resistivity which are just as tractable in computations 
as those stated below. This extension will be reported 
elsewhere; it is quantitatively important. 

The equation for Es with Vlasov self-consistency is 
m 

Es = Rst;,(Est + Sst)Ft + R D(O) , s s s=O,l,... (1) 

where E is the kernel found in Ref.1, purely electro- 
magnetiztin origin, and S expresses 
interaction. The inhomog%eous term D 

fg(t 1:;;;; ;;di- 

the Laplace transform and is a known &ction of ini- 
tial values of the fields and distribution function. 
The function R is a certain ratio of Bessel function 
products, entafling the cavity resistivity; it is equal 

to Rss of Eq.tl.221, Ref.1. The kernel matrices are 

E st 
= (g/2nR) i N+ N I (x b)/~bJo(xmb), 

m=--m sm mt 1 m 

s st = (g/2rrR) y N~mNmtIl(~b)/XmaI~(~b)~- 
m=-co 

m 
where N = N+* is a geometrical factor, 
the tra%it-t&e factor. 

IN 1 2m being 
With km = m/R, mt 

Further, x2 2 
-icos(kmg/2) , t odd 

-(w/c I and 0 represents a reactive 
effect as&ciat?d with the tub%?, 

N = 
mt 

2kmg 

(k g)2-(td2 

=s 
{ 

sin(kmg/2) , t even 
(4) 

Sm = -X,a(Kl(X,a) + I1~~ma~Ko~~mh~/~o~~mb~) + l. (5) 

Finally, W 
m is the plasma dispersion function, 

Wm = $/kmv, -dv f;(v& - kmv)-l , (6) 
,-, -m cf 

OP 
= n(ZeJc/s M being the squared plasma frequency, and 

fO(v) the unpgrturbed velocity, distribution. 
In pursuing a solution of Eq.(l), we first note that 

a zero of the denominator, even though compensated by a 
zero of the numerator, 

!StL m in (2). 

corresponds to a maximum of 
and therefore leads to slow convergence of the 

Since R/g may be in the range 100 to 
1000, a maximum of the summand occurs at a large value 
of m = -t(tn)R/g. Values of m thousands of times larger 
than this value are required for good accuracy, and the 
situation gets worse as s and t increase. To avoid 
this problem, previous workers have restricted R/g to 
unrealistically small values. A standard technique to 
handle slowly-converging series is the Watson- 
Sommerfeld traysformation, which works beautifully in 
this instance. For the electromagnetic kernel (2) it 
yields Est = Fst + Assst, where 

(7) 
F st = -(g/R)(g/b)2(1+(-)s-t) : h.((Aig/R)2+(sn)2)-1' 

i=l ' 

((~ig/R)2+(tn)2)-1(coshnhi+(-)S-1cosh(n-g/R)X.)/sinhnX 1 i 

As = ~l+~so~I,~~sb~/2~sbIo~~sb~ , (8) 

Xi = R((joi/b)2-(w/c)2)4 , rs = ((s~)~-(w/c)2)'. (9) 
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In addition to eliminating the troublesome denomina- 
tars, we have replaced Bessel functions by easily com- 
puted Bessel function zeros j . . The new sum F has 
cubic convergence, and may be'homputed accurate% with 
1000 terms, uniformly in the range of s and t required. 
A further bonus is that F vanishes relative to the 
diagonal matrix A 6 in @i e limit b-+0. This is the 
diagonalization a? g&all b/d mentioned above. Even at 
relatively large b/d, we may treat Fst as a perturba- 
tion, by the method of the sequel. A transformation 
of the series for S is not needed, since at most two 
terms of the seriesSire important, as we shall see 
presently. 

Elimination of the resonant mode and a perturbation 
method 

Let us write (1) in the form 

I-is = Q 1 KS& + Q D (0) 

St=O 
ss ' 

K st 
= F 

st 
+ Sst , Qs = R&l - RsAs). (11) 

Suppose that the frequency w is near a cavity resonance 
in mode s = r. At small b, the resonance condition is 
1 - R (w)A (w) = 0. Clearly, in developing a perturba- 
tion gerieg we wish to avoid iteration of the resonance 
pole that occurs in Qr. To that end we temporarily 
regard the resonant mode coefficient D as a fixed 
source ter2 in Eq.(lO), and solve the gquations for the 
remaining D , s # r. 
tions of 5' 

Those Ds are then linear func- 
r , which may be represented formally as 

Es = 1 11 - QK1,~Qt(Ktr~r. + DJ"), s # r, (12) 
t#r 

where 11 - QK} is the matrix operator (6st - QsKst) 
restricted to the subspace of indices 
s,t # r. Now put s = r in Eq.(lO), and substitute the 
result (12) for the non-resonant modes in the right- 
hand side-of (10). Solving the resulting trivial equa- 
tion for D-_ , we find I- 

Rr (nZ”)+ 1 Krt~l-QK},;QuD~)) 

Er = t .u#r 

l-R~(A,+K,,+ ;I Krt-},;QuKur) 
t ,u#r 

(13) 

We are interested only in the denominator D(w) of this 
expression. The growth time T of an unstable perturb- 
ation is given by that zero of D(w) in the upper-half 
w-plane having the largest imaginary part: l/r = 
(Imw) . Let Gt denote the solution of the resonance- 
free :Kations 

Then 

1 I~-QK>~~G~ = QsKsr , s # r. 
t#r 

D = l-Rr(Ar+Krr+ 2: KrtGt) , 
t#r 

and a simple iterative solution of (14) yields the de- 
sired perturbation series 

D = l-Rr(ArfKrrf ,g%tQ& + 
1 KtiQtKtuQuKur + . . ...). 

t ,u#r 
(16) 

Of course, one is not restricted to a perturbative 
method; direct numerical solution of (14) is an effi- 
cient route to a precise solution, and is called for at 
large values of b/d. Direct solution of the original 
equation is not advisable, since its matrix is ill- 
conditioned in the region of interest and in fact is 
singular precisely at the zero of D that is sought. 

Growth times of unstable perturbations 

A closer look shows that the series (1.6) is still 
not ideal for computation of growth times, because the 
term Sst 
factor 

occurling in Kst has poles arising from the 
l/(W +o ) of (3). For instance, a square- 

step distribu?!ionm fo(v) of full width Av gives 

2 1 1 1 
=wp 

W;l+Om 

[ 

2((tiV/2R)2++m)4 m w-w(-) - u-J+) 1 
(17) 

m 

4 , 62=v /R (18) 
0 

A closely similar result is obtained for any accept- 
able distribution. For w sufficiently close to one 
of these poles, the series (16) is clearly useless. The 
pole residues are extremely small, however, and it 
turns out that at the value of w determining growth 
times one is far enough away from the poles so that the 
series is still useful, provided that the growth time 
is not too large. Nevertheless, better convergence and 
a more convenient formula is obtained by refining the 
method so as to avoid iteration of poles. 

Numerical checks show that at most two terms in the 
sum (3) are at all important at any particular w 
is true because the pole residues are small (10 

-lOmat 
/see). 

Roughly speaking, w is either close to one pole, in 
which case that pole gives nearly the entire value of 
the sum, or roughly equidistant from two poles, in 
which case those two dominate the sum. The minimum 

time occurs when parameters are such that Rewr 
for some m, where w 

zerg defined by putting tt;e 
is the cavity resonance 

self-interaction term 
equal to zero: D!wr)= 0 for S = 0. In this situation, 
which may be achieved by adju%& ~lo~~~;;;~c~;s~;, 
tion frequency a, the pole at w 
and continues to dominate it fo:! R in some neighbor- 
hood of the value for minimum growth time. In such a 
neighborhood we may write 

S 
st = N~mNmtPm(w-w~-))-? (19) 

Now S is a separable kernel (dyadic), which allows 
one &derive the following series in place of (16): 

D = l-cQs(Vs+ 1 UstQtVt+ 1 UstQtUtuQuVu+...)Nms. 
S tfr t ,u#r (20) 

U = Fst -FsrNmt/PJ rcr ' 

Vs = :~N;m(+-' +Fsr/Nmr. 

(21) 

(22) 

Of course, there is also a non-perturbative version of 
(201, analogous to (15). The pole now occurs only 
linearly, as a common factor of all terms in the 
bracket. We now assert that the expression (20) can 
be represented very precisely over the region of n 
of interest as 

D(w) = D; n $,l(w-wr) + h(w-w, (4)-l 
9 c-23) . . 

where D' is the derivative of the purely electro- 
magnetig'$&-t of D obtained by dropping the pole term 
(putting P = 0), and 
two zeros gf D(w) are close to w 

A is a consta~~twr;ii,Sma~~et~~tree 

constants D' , w , and X are e&ily o%ained numer- 
ically frome(!!O), &d the growth time T is obtained 
from (23) by 5olving the quadratic equation D(w) =O. 
In terms of u = h/D' 
positive, the answerei??' 

, which is almost real and 

-1 T = Imw = 1',(1mw~+~~((x~+y~)' -x)': ), (24) 
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x = 62-(Imur) 2 -4u2, y = 26Imwr , 

Now to(-) hence 6 
(25) 

tion Treiuency si 
, is a linear function of the revolu- 

, according to (18). The shortest 
growth time corresponds to 6 = 0, which is to say that 
the m-th harmonic of R is equal to the real part of 
the resonance frequency (plus a small shift given by 
the square root in (18)). Because of the sharpness of 
the resonance (high Q of a metal cavity), Imw has a 
sharp cusp at its maximum and decreases rapidly as 161 
increases. We illustrate for a square-step distribu- 
tion and parameters of inter-e22 in ion beam fusion 
designs: 10 ampere beam of Hg ; a=.03, bz.06, dz.3, -4 
g=.5, R=lOO, all in meters,6and -g=vo/c=.3, A$/i3=3xlO , 
U= cavity conductivity = 10 (mn) . A rough evalua- 
tion of (20), subject to improyements nos in progrygs, 
gave o d/c = 2.412 - 9.916x10 i, (ud/c) =9.64x10 . 
These 'numbers with (24) give the results in the table, 
where An represents the deviation of s1 from the value 
giving the shortest growth time, and T is in millisec- 
onds. 

(ASl/n)x105 0 2 4 6 8 10 12 

T(m) 1.05 1.29 2.01 3.22 4.93 7.13 9.84 

As An is increased beyond the values in the table, T 
eventually begins to decrease-yd reaches its minimum 
value again as the pole at urn-1 comes to the position 
Rear. 
= 

~h&3 occurs approximately at An/n = 1/m =1/2680 
37x10 ; the growth time is periodic in An/a with 

period l/m. In a region midway between two minima of 
is not accurate, since two poles, 

We have not yet comput- 
appears that the growth 

time is greater than 10 times minimum in perhaps 30% 
of a-space, and greater than 2 times minimum for about 
80% of n-space. 

There is also a zero associated with w (+) , but it is 
in the lower half-plane, because(t_$e signmof the pole 
residue is opposite to that of w . An anomalous 

arises if parameters aYe adjusted so that 
. this may be done with reasonable parameters. 
Gale residues vary slowly with m, and (+) and 

(-1 residues have opposite signs, there is a near can- 
cellation of one pole by the other in this c 
the growth time is unusually long, even if w 
Perhaps this curious effect deserves furthermthought. r 
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