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Introduction 

Richter has proposed a single-pass-collider (SPC) 
for electrons and positrons of energy E L 50 GeV col- 
liding once per bunch with a repetition rate of 180 Hz 
hav$ng a1lymposity equal to or greater than 1030 

5"x $oc * ' 
To achieve this, beam intensities of 

particles/bunch focused to spot sizes of less 
than _+2 urn are necessary. 

The purpose of the final focus system (FFS) is to 
demagnify the beam envelope in the Collider arc lattice 
to a size suitable for beam collisions at the inter- 
action region. The final spot size is determined by 
the beam emittance, the beta function B* at the IR, 
the momentum spread in the beam, and the quality of the 
FFS optics. In particular, if the focusing system is 
not chromatically corrected, the momentum dispersion in 
the beam can lead to a substantial degradation in the 
quality of the final focus. The objective is to design 
a FFS for 50 GeV/c within -100 meters having an IR spot 
size ax 

K 
of approximately 2 urn for a beam emittance of 

E = 3 x o-10 m-rad and a momentum spread of 6 = +0.5X. 
This requires a Sx,y equal to or less than 1 cm. In 
this report we consider the problems encountered in the 
design of a final focus system that will reliably pro- 
vide the desired beam size for collisions. 

The design of single-pass systems usually follows 
from second order, linear differential equations using 
the equivalent dipole and quadrupole fields of the 
actual magnets to be used. This is adequate for "good" 
magnets (i.e., those with acceptably pure central 
fields) and for small enough beam sizes (cx,ii, << g) 
where g is the magnet gap opening and 0 is the average, 
transverse, rms beam size through the magnet. While a 

?-I: J momentum 1 
.’ Idispersion I 

system can generally be built that validates such a 
model it is clearly not optimal. Furthermore, it is 
difficult to determine just how small the input emit- 
tance must be, how good the magnets should be or the 
related question of misalignment sensitivity. Even for 
the rather small invariant emittance proposed for the 
SPC (oxoxry = 3 ~10~~ m-rad), the strong focusing re- 
quirements indicate the possibility of higher order 
aberrations both before the interaction and afterwards 
when the emittance has been blown up by the beam-beam 
interaction and the beam is being transported to a dump 
or external area. As a result, it is desirable to 
develop a mathematical model for systems of dipoles, 
quadrupoles, sextupoles and higher multipoles that is 
valid to all orders and includes such effects as radia- 
tive energy loss. This then allows us to accurately 
predict the absolute focal position in space, the trans- 
verse and longitudinal beam profiles as well as energy 
spreading and damping effects. 

Optics of the Final Focus System (FFS) 

The objective of the FFS is to provide an IR spot 
size of ox, = fi < 2 urn for a beam emittance of 
E = 3x IO-lx m-ra::Yanwenergy of E > 50 GeV and a 
maximum energy spread about the cefttral orbit of 6,, = 
CO.5%. An FFS that satisfies these requirements is 
shown in Fig. 1 and consists of four telescopic half- 
wave optical modules. The total length of the system 
is 114 m and consists of quads, bends and sextupole 
elements. Only quadrupoles would be necessary for 
sufficiently small energy spread. The first two tele- 
scopic modules match the beta function of the arc lattice 
to the desired IR S*. The last two modules are used to 
correct the chromatic distortions at the IR. 

/\ - 1.5mm/percent 
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Pig. 1. Optical layout of the FFS showing the dispersion function (nx) and betatron amplitudes (Bx,y). 

* Work supported by the Department of Energy, contract DE-AC03-76SF00515. 
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Ray tracing the quadrupole array shown in Fig. 1 
with the sextupoles turned off and using idealized, 
sharp-cutoff, pure quadrupole fields gave a monochro- 
matic spot size of ox,y = fi urn as predicted by linear 
theory. This increased to ax,y = 2.0 pm when realistic 
quads having the same effective field integrals but with 
fringe fields satisfying Maxwell's equations were used. 
Including an energy spread of cS,~ = CO.S%, as described 
in an appendix, increased these spreads to ux = 5.7 urn 
and o 
tions 

Y = 47 urn. Thus, higher order geometric aberra- 
are acceptable but chromatic aberrations drastic- 

tally increase the spot size and need to be corrected. 
The chromatic broadening can be significantly re- 

duced by placing sextupoles where the beam is momentum 
dispersed. Thus, a system of bends, quads and sextu- 
poles is required with the bends providing the neces- 
sary dispersion and the sextupoles correcting the 
dominant second order chromatic aberrations in both 
transverse planes. It can be shown that the symmetry 
of the arrangement in Fig. 1 provides an optical system 
in which all second-order geometric and chromatic aber- 
rations remain small. However, introduction of the 
dipole elements increases the energy spread and emit- 
tance via synchrotron radiation and the sextupoles in- 
troduce higher-order geometric and chromatic aberrations 
all of which must be minimized to achieve the smallest 
possible spot size at the IR. The most significant of 
these effects at 50 GeV was the higher-order optical 
aberrations. Figure 2 shows the fully corrected spot 
size at the IR for the configuration of Fig. 1 and the 
phase space description of Appendix 1. The rms standard 
deviations are: 

uIp = IP 
x uY 

<2.10l.lm , pmaxl s 0.5% . 

Thus, the beam radius at the IX is essentially constant 
at 2 urn for all incident momentum spreads 6,, ( ~0.5%. 
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Fig. 2. Scatter plot of 3000 randomly selected 
rays traced through the FFS. The circles are 
drawn with radii of one and two standard devia- 
tions which contain more than 50% and 90% of the 
beam, respectively. . 

Figure 3 shows the tolerance of the system to variations 
in the incident beam momentum spread. 

I 80 6 mar (%I ,s<.. 8 

Fig. 3. Predicted beam position and spread at 
the interaction region as a function of maximum 
incident momentum 6,,. The mean value of ver- 
tical position <y> is very small because there 
are no vertical bending magnets in the system, 
i.e., (y/6") and (~'16") are negligible so long 
as there are no significant rotational mis- 
alignments. 

Ray-Tracing Discussion 

The above results were obtained from exact solution 
of the nonlinear differential equations of motion for 
the system of Fig. 1 with the fields of Appendix 2. 
The fields were determined from Taylor expansions through 
at least the first two leading orders for all multipole 
fields. A number of checks on all aspects of the cal- 
culations were carried out to obtain both accuracy and 
speed. The results of ray-tracing were analyzed in a 
number of different ways. For instance, to understand 
the variation of the mean position of the beam at the IR 
(<x>,<y> in Fig. 3) and its rms spread, we projected 
individual rays onto a generalized transfer function 
which is a power series expansion of the output variables 
(x0 9x;, , 
etc.). 

etc.) in terms of the input variables (Xi,Xi, 
The complete transfer function through fourth- 

order was determined in two independent ways. We found 
the fourth-order chromatic term (x]y"6*) = 3.09 cm/mr*/%' 
dominates <x> whereas the variation of ox with incident 
momentum spread comes from the terms: 

(~ly'~S> = -6.8 (cmlmr2/%) 

(x(yy'6) = 1.6 (cm/cm/mr/%) 

(xlxx'6) = 1.3 (cm/cm/mr/%) 

(x(y'W = 3.1 (cm/mr2/%2) 

The same kind of analysis as for 6,, (Fig. 3) can 
be done for the rest of the input phase space (ax,ox,, 
etc.) to show other sensitivities. This is not done 
except to show one of many plots of the correlation 
between input and output variables, e,g., x0 and yi in 
Fig. 4. One sees a very fast increase in beam size for 
yi 2 7 urad, i.e., the system has been well optimized 
for uyli _< 0.00825 mr. The rapid increase beyond these 
values of yi is due to some of the previous terms as 
well as the higher order geometric terms: 

(x)x'y'*) = 297.8 (cm/mr3) 

(xl~'~) = 2703. (cm/mr4) . 

Thus, even for a monochromatic beam we would expect a 
comparable result in Fig. 3 weighted toward positive 
values of x0. Such terms are not easily corrected in 
optical systems whose highest order multipoles are 
sextupoles. 
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Fig. 4. Results of ray-tracing showing the 
correlation between the output horizontal 
position (x0) at the IR and input vertical 
angle (~1) from the collider lattice. 

Appendix 1 - Phase Space Prescription 

The ray set which is traced is selected at random 
by assuming independent normal distributions (9) in the 
transverse coordinates (x,x',y,y') and a square distri- 
bution in the energy coordinate (6) of each particle: 

+(5) = *e -4(~/& ; 5 = x x’ , y ,Jr y’ , 

‘h(6) = 2@-%) ; OsR_<l . 

The constraints on individual rays are: 

(+J+ (Gy 5 ’ 

(2J+ (+J 2 l 
6i = bmaxl e(6) * 

For assumed rms standard deviations of: 

cr. =u = 0.03637 mm 
X1 Yi 

ux,i = 0 
Y’i 

= 0.00825 mr 

6 = ?0.5% max 

the resulting effective rms input spreads using these 
values and the Zo-prescription are: 

cr =a - 0.0300 mm x Y 
uX’ 

=a 
Y' 

- 0.0070 mr 

c6 - 0.289% 
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Appendix 2 - Field Description 

For a right-handed coordinate system with z along 
the magnet axes (x=0, y=O) and the dispersion plane 
corresponding to the x-z plane (y=O), we define the 
normal angular orientation of any multipole about the 
z-axis so that there is mirror symmetry about the y=O 
plane. This limits the field in the median plane (y=O) 
to a single component, B 
everywhere B(x,y,z) can z 

(x,O,z), from which the field 
e determined to any order 

based on Maxwell's equations and a general multipole 
prescription using modified Fermi functions:4 

Dipole: By(%O,d = Bo/(l+e SO ) 

Quad : aBy(O,O,zmx = Gl/(l+eS1) 

Sext : a2By(o,o,z)/ax2 = 2G2/(1+eSZ) . 

S is a polynomial in z normalized to the total gap or 
bore opening (g) for each multipole. The fifth order 
polynomial 

s = co + C,(z/g) + c2(z/g)2 + . . . + C5(z/gj5 

is sufficient for most cases4 as shown by the fits to 
measured data in Fig. 5 for the magnets of the PEP 
storage ring.5 None of these magnets were terminated 
by field clamps so they provide a consistent field 
description for the SPC. The coefficients are given 
in Table I. 

TABLE I. Field Coefficients 

I I 
-1.5 - 1.0 - 0.5 0 0.5 1.0 1.5 2.0 

s-c NORMALIZED DISTANCE ALONG AXIS UNITS k/G) I.SO.1 

Coefficients Dipole Quadrupole Sextupole 
CO 0.478959 0.296417 0.176659 
Cl 1.911289 4.533219 7.153079 
C2 -1.185953 -2.270982 -3.113116 
C3 1.630554 1.068627 3.444311 
C4 -1.082657 -0.036391 -1.976740 
C5 0.318111 0.022261 0.540068 
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Fig. 5. Dipole, quadrupole and sextupole 
field distributions normalized to their 
pure harmonic, central field strengths 
versus distance along the longitudinal 
axis normalized to their respective gap 
openings. The dots (a), pluses (+) and 
circles (0) are measured field data for 
the PEP standard bends, quads and sextu- 
poles. The solid curves are fits corres- 
ponding to the coefficients of Table I. 
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