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Summary 

Longitudinal coupling impedance of a resonant 
cavity is studied by the normal mode analysis using 
the Coulomb gauge. The vector potential giving a 
solenoidal electric field leads to a resonant form 
described by a parallel LCR circuit. The coupling 
impedance at resonance is equal to the shunt impedance 
of the cavity. The scalar potential giving an 
irrotational electric field results in a non-resonant 
and purely imaginary coupling impedance. Since this 
latter impedance plays no role in power consumption, 
it has no relation to the shunt impedance of a cavity. 
Explicit expressions of the coupling impedance are 
give for a pill-box cavity considered by Keil et 
al. 17 It is shown that their result on higher-order 
mode loss is derived from the real part of the coupl- 
ing impedance considered here. 

91. Introduction. 

It seems to be known for some time that the coupl- 
ing impedance of a resonant cavity which appears in 
the theory of collective beam instabilities is 
equivalent to the shunt impedance of a cavity. 

2) 
In a 

classical paper by Neil and Sessler , the coupling 
impedance is put equal to th 
any remark. Later, Schnell 37 

shunt impedance without 
proved the equivalence 

of the coupling impedance and the shunt impedance of 
a cavity from the consideration on the energy dissipa- 
tion in a cavity. 

Though Schnell's derivation is simple and intui- 
tive, two important points are missing which will be 
clarified in this paper. First of all, the resonant 
behavior of the coupling impedance, which is often 
explained by resorting to a parallel LCR circuit, is 
not clear. Secondly, since his derivation is based 
on energy dissipation, the out-of-phase or purely 
imaginary coupling impedance cannot be dealt with. 
Indeed, it is shown in this paper that the irrotational 
part of the electric field gives rise to a purely 
imaginary coupling impedance. 

In order to make the situation transparent, we 
deal with the electromagnetic field di;eg ly by normal 
mode analysis using the Coulomb gauge. ' 5 As an 
application of the present approach, we give explicit 
expressions for the coupling impe ante of a pill-box 
cavity considered by Keil et al. 17 We will also 
discuss their result on higher order mode loss in 
terms of the coupling impedance derived here. 

52. Normal Mode Analysis 

In this section, we review the normal mode 
analysis for the electromagnetic fields in a resonant 
cavity. ‘1,5,6) We use the Coulomb gauge. The electric 
field &and the magnetic fieldB are derived from the 
vector potential4 and the scalar potential @ 

E=-$3 -v+, 

/f?= PM, 
(1) 

where c is the velocity of light. The potentials 
satisfy the equations 

v=+= -4lT7, 

(PI 

2566 

where p is the charge density and& is the current 
density. The boundary conditions are, if we assume a 
perfectly contucting surface, 

/bm=o, 
q =01 

Con fk sctrjke) (31 

where%is the normal extending inside from the 
surface of the cavity. 

We introduce the normal mode fields 
which satisfy As and @,, 

v% t g4Js =o, 

dpss i-24 =q 
where w denotes the eigenfrequency of the modes. 
The fields & and 4 satisfy the boundary conditions 
(3) and are normaliged such that 

S,,,4, &d=+dir: 

I, d&i & d v =+ncz &y, 
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where the integral is done over the inside volume V of 
the cavity. We expand the potentials in terms of the 
normal modes 

A (K+) -g&w /&lb, 

+w =Q u, M-J 4s Cr). 

Then, we obtain the following equations for the 
coefficients q,(t) and r,(t), 

& (it>+ lqgfl= &jrr,.t)Ast~)Jw, cp, 

‘r; (*I-- & lp MO 4s IId dv 
We note that the equations for the vector and scalar 
potentials are decoupled, We also note that the vector 
potential gives a solenoidal part of the electric field 
and the scalar potential gives an irrotational par of 
the electric field in the nomenclature of S1ater.e 5 

Now, we consider the effect of a finite conduc- 
tivity of the cavity wall. Since the vector potential 
gives the solenoi al part of the electric field, the. 
method of Slater6 Y gives instead of (7) the followin 
equation for q (t) (we assume the time dependencee- 743 
instead of e\lu%in this paper) 

where 6 is the skin depth of the wall, H denotes the 
magnetic field intensity and the integra? is over the 
surface S or over the volume V. Since the scalar 
potential does not give a magnetic field, no change 
will occur in the'equation (8) for r,(t). 

53. Longitudinal Coupling Impedance of a Cavity 

According to the definition of the coupling 
impedance, we study the electromagnetic field excited 
in a cavity by harmonic current and charge densities 

jpw s.& &t‘) e 1 Ckp-k>> 
p-,-t) = dv SW e1 @a- dJ, 
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s= xy 
bJ=RV, 

Then, from eq. (9), we get 

&If)= ~Lvi. p2& 
(us' -w' - (WC) u* 

> 

M~=(PJS'CO/D,d~e"a~d, 
and, from eq. (a), we get 

v,(f)= $$ e-""tJ 

(@I 

033 

W 

0s) 
The induced longitudinal electric field is respectively 
given by 

(/6, 
and 

We resolve the standing electric field wave into 
travelling waves and keep only that part which travels 
in phase with the rf current and charge waves. Then, 
the voltage per turn V due to these electric fields is 
given by - 

t/= SE2 e-&f" C.Lf~ Using the definition of the coupling impedance 

Now, we consider a pill-box cavity considered by 
Keil et al.') It is shown in Fig. 1. The side wall 
is assumed to have a finite conductivity and the walls 
perpendicular to the beam are assumed to be infinitely 
conducting. The normal mode fields for the TM-mode 
vector potential and the scalar potential are 

Ae=L?, (2’1) 

p is an int<ger and v is the s-th zero of the Bessel 
function JO(X). Then: 

and 

we obtain '= -='I: 

type and described by a parallel LCR resonant circuit. 
Eq. (21) is purely imaginary and non-resonant. 

Referring to eq. (20), which is the coupling 
impedance due to the solenoidal electric field, the 
resonance frequency w- is given by 

W 
At resonance, 

Now, 
C@ . 

P?s=.\A3sro,o,g s&se+ - - 
~-~JEIe~-$L c-s) 

V is the accelerating voltage including 
the transit time factor and the stored energy W in the 
cavity is given by5' 

1~2 +uggJ= $I&: 
Using theWreTa?on Q, =.!!#y 

WI 
we finally obtain 

which is equal to the shunt impedance of the cavity. 
Thus, the equivalence of the coupling impedance and the 
shunt impedance is proved. The purely imaginary 
coupling impedance due to the irrotational electric 
field, however, is not related to the shunt impedance. 

54. Coupling Impedance of a Pill-Box Cavity and High 
Order Mode Loss 

give the.coupling impedance of the pill-box cavity: 
The higher order mode loss per turn AU in a 

stationary multi-turn case is given by 

AlJ=&~, RZCW~) e -++ u:y 02) 
where I is the average currnet per bunch, wg is the 
revolut%n frequency, o is the bunch length and Re 
denotes the real part. It ca:)be shown by some algebra 
that the result of Keil et al for the higher order 
mode loss is equal to eq. (32) if we take the coupling 
impedance Z(nwo) derived here. The coupling impedance 
due to the irrotational electric field is purely 
imaginary and does not contribute to energy loss. 
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