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Summary 
Modes above the cutoff frequency of the ISABELLE 

vacuum chamber have been investigated to ascertain the 
microwave longitudinal coupling impedance. (The 
investigation is limited to those modes that have fields 
in the beam pipes.) Perturbation measurements of the 
electric fields were made between 2.6 and 2.8 GHz. A 
phenomenological method of calculating these impedances 
was developed. There was excellent agreement between 
the calculated and measured impedance. The theoretical 
results were then extrapolated to 5.5 GHe. 
1. Definition of Coupling Impedance 

The coupling impedance, 2, between the beam and 
cavities, formed by the vacuum chamber, is identical to 
the definition of shunt impedance, R,, used for linear 
accelerators, and is defined as 

2 = Rs =[i E.~z~// P(z)dz. (1) 

L is the length of the cavity, P(z) the power loss and 
E = E,F(s)f(z,t), where E, is the peak field, F(z) 
is the spatial field distribution as a function of s, 
and f(z,t) is dependent on the particle's velocity and 
position in relation to the phase of the rf field. 

If we consider a cavity that has 4 periodic length 
L, then F(z) can be decomposed into a Fourier series 
having spatial harmonics: 

F(z) = > + i (ak sinBkz + b cosf3 z k k 
, 

k=l > 
(2) 

where the propagation constant Sk = 2rk/L. 
We will only consider particles that have a 

constant velocity v P' . therefore, s and t are linearly 
related by the expression z = vpt. The function 
f(z,t) depends on both the frequency of the cavity,wm, 
and the velocity of the beam. JJsing the definition 
that w&n = Sh--2rh/L, we can now write , 

f(z,t) = sin amt + Q 
( 

) = sin c+ + +), (3) 

where 4 is the phase angle between'the beam' and 
voltage. 

cavit) 

We can now write Eq. (1) as 

.+bkcos$+%)].in(++c)dr}* 

L 

J P(z)dz (4) 
0 

From the above equation we see that when k # h, then 

RS = 0; and when k = h, we get R, > 0. It should be 
emphasized that we are only dealing with synchronous 
particles, where h is an integer; therefore, the 
coupling impedance per cavity, of length L, is the same 
for all cavities. 

and, 
For nonsyncronous particles, h is not an integer, 
therefore, the phase $ is no longer a constant but 

varies as a function of z and t. It is still possible 
to have 1 R$ > 0, but the value of R, 
function of s and t. 

will vary as a 
The integral of this impedance, 

over a period of time. will go throueh reoeated zeros. 
2. Perturbation Measurement: 

1 . 

We would now like to find the coupling impedance, 
s, by measuring the field distribution along the beam 

line of a cavity and applying these results to Eq. (4). 
Figure 1A is a schematic representation of a typical 
section of the ISABELLE vacuum pipe where the dimensions 
shown are approximately those of the real machine. We 

R 
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now consider a cavity of length L by placing shorting 
planes as indicated in Fig. 1A. Of interest are the 
TM elm modes which have an axial electric field 
distribution E,, as shown in Fig. 1B; it is these 
fields that contribute to the longitudinal coupling 
impedance. (Note: this paper will only consider 
those modes that have fields in the beam pipes and no 
fields in the pump out boxes). 
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FIG. l(B). SOME TYPICAL TMolm FIELD DISTRIBUTIONS. 
The fields are measured by pulling a small metal 

sphere, of radius ro, 
We can now write 

along the axis of the cavity. 

= EoF(d, (5) 

field in volts per 
meter at a point r., co = l/(36 x lO')F/m, W 
is the stored energy in the cavity in joules, and 
f is the unperturbed frequency of the cavity. By 
substituting Eqs. (3) and (5) in Eq. (I), and 
remembering that 

J, 
Q = 2nWf I?- P(z)dz, 

0 

we get 
2 

. (6) 

Equation r6," can now be evaluated for the 
different TMolm modes by inserting the 
measured value of '&, Q,,,, and f,,,(z). The 
actual data can be handled in two different ways: the 
information for Af,,,(z) can be numerically inserted 
in Eq. (6); or as we were actually able to do, an 
analytic function can be fitted to the data. It was 
surprising that a relatively simple sine function 
matches the data to a high degree of accuracy; for 
example, the TMolm modes, as depicted in 
Fig. lB, when substituted in Eq. (6) becomes: 
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Since we are interested in particles with 
velocity v = c, we must now find the spatial 
harmonics !hat match this particle velocity, that is 

"P = v,, = '* By plotting the line vp = c in Fig. 
2, we can immediately determine where this occurs. 
Using Eq. (a), it is now possible to calculate the 
shunt impedance as a function of w, for the 
different spatial harmonics. 

To illustrate how Eq. (8) is used to calculate 
R, for the different modes, let us consider Fig. (3) 
which is an expanded section of Fig. (2). For those 
curves identified by odd Roman numerals, R, = 0. 
This results from the fact that for these curves m + h 
equals an odd number. For the curves indicated by 
even Roman numerals, the R, must be calculated at 
the point where the curve intersects the line 

dz 

(L+a)/2 
i- J 

(L-a)/2 

+(-l)m 
(L+a)/ 

sim z-@+a) /2 II L,2-a sin(yz+$)dz 

=v =c. vP Q 

2681 

A 

J- 

)- 

1 

I- 

,- 

2 
+ , (7) 

(*L-a) I 

where 
3f 2 

EOnr Afy= w" 
m 

It is obvious that for our particular cavity, 
having the fields as shown in Fig. lB, the only spatial 
harmonics that exist in Eq. (4) are the ak sin 2nkz/L 
terms, where k = 1, 3, 5,.... By comparing Eq. (7) with 
Eq. (41, it is apparent that for synchronous particles 

- m*15 

c m=14 

(MHz 

t66C 

m 

with $ = 0, we get a maximum R, for h = k (an 
integer). Therefore, Eq. (7) reduces to 

- 2a/L]rl + (- urn + Tsin * 

mn 1 - (h/m)'(l - 2a/L) [ 
for a f L/2 (1 - m/h), and 2650 
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FIG. 3. EXPANDED w VS 6 DIAGRAM. 

Rs = . 
moo 

(8B) 

for a = L/2 (1 - m/h). 
3. APPLICATION 

Before attempting to apply the above method, it is 
essential to consider the dispersion curve of the cavity 
structure. The measured w vs 8 diagram is shown in Fig. 
2 by a solid line, where 8 is plotted in terms of the 
spatial harmonic number h. Also included on the diagram 
are the dispersion curves of the spatial harmonics, as 
indicated with dashed lines. Measurements were made on 
a single cavity of length L; with a longer cavity many 
more resonances would have been observed. The structure 
will no doubt have stop bands which have not been 
considered in this paper, but a new model is being built 

Let us first consider the case when a mode lies 
on the v = c line as indicated in Fig. 3 for m = 11 
and h = 91. It is a simple matter to calculate R, 
of this spatial harmonic by substituting in Eq. (8) 
the values of m = 11, k = 71, and the measured 
011, w11, Afll max. 

The second case is when a mode does not lie on 
the v 

P 
= c line. For the curve X, in Fig. (31, we 

calcu ate R, for the points A,B,C, and D as was done 
in the previous example. Each of these points has its 
own set of parameters for m,h,O, and also its own 
phase velocity v - t+,/S = f,L/h. The results are 
plotted in Fig. t- , showing R, vs. v+/c. The 
condition of interest is where ve/c = vp/c = 1, 
which corresponds to the interaction of a spatial 
harmonic wave and particle wave both traveling with a 
velocitv eaual to c. and the resultina 4" = 685H. 
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study this problem. 
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4. RESirLTS OF MEASDREMENTS 
Of interest is the total impedance around the 

ring as seen by the beam and expressed as a ratio of 
Z/n, where 2 = R, x Lo/L (where Lo is the total 
length of the structure around the ring and L, as 
before, is the length of a single cavity), and 
n = fm/fo (where f, = 78kHz, the fundamental 
rotational frequency of the ISA). For the results 
given in this paper we used the approximate relation 
that 2 = 400 x R,. Figure 5 is a plot of the 
measured Z/n for different modes between 2.6 and 2.8 
GHz. It should be noted that some of the modes have a 
2, = 0. These modes all have a value of n + h equal 
to an odd number, and from Eq. (RJ we see that the 
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corresponding R, = 0. What this implies, for the 
particular structure being considered, is that the 
symmetry of the structure does not allow certain spatial 
harmonics to exist. The remaining modes shown have 
relatively narrow resonances with Qm values between 
4100 and 4600. 
5. CALCULATIONS 

As was previously stated we are only considering 
those modes that have electric fields in the beam pipe 
and no field in the pump out boxes. As was shown in the 
reference, the stored energy in the pump out boxes is 
considerably less than 1% of the stored energy in the 
beam pipes; therefore, the beam pipes, Fig. IA, can now 
be treated independent of the pump out boxes by assuming 
a magnetic boundary at a/2, (L-a)/2, (L+a)/Z and 
(2L-a)/2. Since we are considering the TM01 type 
modes that have a radial J,(k,r) dependence, where 
kc = 2jol/d, it is a straightforward matter to 
write the field equation and calculate the stored energy 
and average power loss in the beam pipes for the various 
nodes. By making the appropriate substitutions in Eq. 
(8A and B) we get 

2Z2f2L 
Rs = 

OC 

"J:(jo,)R,&d 

2Z2f2L 
R oc '1 m 2 

s= 
rJ;(jOl)R~f;d " { [I 1+(-1)&h (9B) 

for a = L/2(1-m/h),- 
where R 
f, = cflOl/ dj2 + (m/2 )2]1/2 'the frequency 

is the ac surface resistivity and 

of the mth mode, and fc the cu; off frequency. 
6, RESULTS OF CALCULATIONS 

As was done in section 4, Z/n is expressed in 
terms of R,. Using Eq. (9A and 9B), Fig. 5 shows a 
comparison between the measured and calculated values 
of z/n. As shown, there is an excellent agreement 
between the measured and calculated values between 2.6 
and 2.8 GHz. 

In principle one can now calculate the Z/n above 
2.8 GHz where measurements become difficult to perform 
because of the mixing of the TMOlm modes with 
other modes. The calculated values of Z/n up to 5.5 
GHz are shown in Fig. 6. 

At first, the finding of such high Z/n values 
above 2.8 GHz created some doubt about the results but 
a simple argument can be made to account for these 
high values. As the frequency increases some of the 
modes contain a large spatial harmoic component having 
a phase velocity v,+, = c. It is these components which 
couple strongly to the beam and are responsible for 
the high values of Z/n. A further check was made by 
making some spot measurements between 3.0 and 3.6 GHz. 
The measurements clearly showed that in this frequency 
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FIG. 6. CALCULATION Z/n VS FREQUENCY. 

range the measured values agreed with those shown in 
Fig. 4 to within 230%. The larpe measurement errors 
were due to the lack of proper equipment. Even 
considering the most optimistic results, the values 
of Z/n are high enough to be of concern. 

If the impedances as measured prove to be 
troublesome, it would be necessary to change the 
design of the structure. Some thought has already 
been given to design changes which would lower the 
0, values and thereby reduces these impedances. Any 
major change must be carefully considered for its 
possible impact on other machine design parameters. 

We would like to thank Louis Mazarakis for making 
the measurements. 
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