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Abstract 

Beam transport matrix elements describing the 
linearly falling fringe field of a combined function 
bending magnet are expanded in powers of the fringe 
field length by iteratively solving the integral form 
of Hill's equation. The method is applicable to any 
linear optical element with variable focusing strength 
along the reference orbit. Results for the vertical 
and horizpntal focal lengths agree with previous cal- 
culations for a zero gradient magnet and an added 
correction to the dispersion is found for this case. 
A correction to the fringe field gradient peculiar to 
a combined-function magnet with strong edge focusing 
is also found. The influence of edge focusing on the 
tunes and chromaticities of the NSLS rings is de- 
scribed. The improved chromaticity calculation for 
the booster was of particular interest since this ring 
has bending magnets with poletips shaped to achieve 
small positive chromaticities. 

Transfer Matrix for Arbitrary Linear Focusing Element 

A systematic approximation to the transport na- 
trix of an arbitrary linear element may be obtained by 
writing an integral equation equivalent to Hill's 
equation. We start with the tautology 

s1 
x(s) = x0 + x; * (s-s,) + /; (, x"(s2)ds2ds1. 

0 0 

where x 
0’ 

x' o are constants. 

We require x"(s) + K(s) * x (s) = 0 so 

x(s) = x0 + x:, I (s-so 
s1 

1 - f", f, K(+(s2)ds2dsl. 
0 0 

We do the substitution iteratively 

x(s) =x,+x; (s-so)- fZ dsl ,; ds K(s2)' 
0 0 2 

0 
+ x~~[s2-so)-~~~s,i~3ds4K(s4)[xo + Xh”(S4 -so)-. .I 

0 1 
We group separately the coefficients of x0 and x:, 

to find the elements A, B in the top row of the 2x2 
transport matrix 

Ahso) Jkso) X 
0 C(%So) &so) I[ I X’ 
0 

A = 1 - ,"s ds$ds2K(s2) + ,z dsljSslds K(s2) 
2 0 0 0 0 

J12ds 3s :S3ds4K(s4) - . . . (1) 
0 0 

B = (s-so) - ,z ds ~S1d~2K(s2) * (s2-so) + 
ols 0 

(2) 

1: dsl/llds 2 K(s2) * J12ds js3ds4K(s4) - (s4-so] -... 
0 0 0 3so 
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C(wo] = k A(s,so) 

Dho) = & B(s,so) 
(3) 

It is easy to verify that the above expressions 
are correct for the case K(s) = constant. The tech- 
nique described above is commonly generalized to ap- 
proximate the effect of nonlinear focusing terms, but 
is it a useful way to systematically approximate 
linear focusing elements in which K(s) varies rapidly 
with s, such as edge focusing or wiggler magnets. 

Here the technique will be applied to a fringe 
field derived from the magnetic scalar potential. 

$(a,y,z) = v (I+? a) 

The {a,y,z) coordinate system, illustrated in 
Fig. 1, has axes parallel to the symmetry planes of 
the magnet. From the potential, 

By = y ( 1 + k a) for O<z<A, (4) 

BY =B,+G . a for z>A. and 

By= 0 for z<O. 

Consider a particle approaching the magnet end 
along the reference orbit shown in Fig. 1. Before 
entering the magnet, the particle trajectory makes an 
angle 0, with the z axis. We may express the angle 

between the reference orbit and the z axis in terms of 
the pathlength s along the reference orbit: 

(5) 

We substitute (4) into (5) above and approximate G a 

by G-Z tan Bo. We expand cos&sI, around B(s) = Bo, 

to order $*. By iterative substitution we can 

Figure 1. Coordinate Systems 
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approximate to order(k)' and' (+&j: 

0 
(6) 

We can now calculate the path length of the reference 
orbit in the fringe field 

s = p 
da 

0 cos(90- S(z)) 

or again expanding & around So and using (6): 

2 
1+2sin*S 0 3 

cos5 e sr 
0 

(7) 

I7e must write the derivatives of B in a curvi- 
linear coordinate system {x,y,s} associzted with the 
reference orbit (Figure 1) 

(8) 

aa aa 
- = COS e(S), - = - sin e(s) ax ax 

17e substitute (9) into (81, expand the sines and 
cosines to order ,$ and substCtute 

to get KY(s) to order and G : 
BP 

IJe may now substitute (IO) into the formulas for 
the transport matrix el?ments (2), (3), and make all 
integrals dimensionless by replacing 

,; ds, 
0 

by 6 1; dul, s1 = 6~1 + s 
0’ 

The result Is 

- (;)2 (b2) e?$!.? 

2cos20o sin3 3cos2R 

4! - (b) ++; (b’) + 
7 

'(12) 

+o 

- $ (,,*) k?$k 

(b) sine 0 

+ .$ (b*) $ + ' - $ (b2) 2'06280 
sine 3cos28 
-++; (b*)+ . 1 (14) 

L 4 

2 
where g = j$- 

B 6 
,b=-%- 

BP 

Here the upper sign is for the vertical motion 
and the lower is for the horizontal motion. The last 
term in each expression is the contribution to hori- 
zontal focusing from the orbit curvature: 

K, = 1 -K+-. 
Y P2(S) 

One may verify that the determinants for the 2x2 sub- 
matrices equal 1+O(b3). Exact unimodularity should be 
enforced artificially be defining 

A-l+BC 
D 

which adds corrections of order b3, b g, g2 and higher 
to A. 

The dispersion rl(s) may be calculated by the 
method used for the betatron transfer matrix, since 

n”(s) + Kx n(s) = + 

n(so)=O, n’ (so)=O; n(s)= iz 11’ -$ jr(s2)Kx(s2)ds2ds 
0 0 s2 

(15 

1 

) 

For the fringe field assumed earlier, 

r, = 6 G63 
s sinflocose 

2 
on 

Bo62 
+ - 

BP* 
COSG l+ 

0 3! (16) 



2 
GE3 2sin40cos00 

n’= Bps 
2sin Bocos O. 

3! 4! 
(17) \-.I 

Finally, the change in path length is 

i 

BOA sinSo I 2 
ds 

1+2sin2B 
0 

---- BP cos360 3! 
5 cos 9 

& (18) 
0 

+ -l 

+c”1 
2 sinLOO 2 

BP ---Jy aA 
1 

Figure 1 and Equation (10) show that w have 
placed the origin of the (a,y,z) coordinate system at 
the point where the reference orbit leaves the field- 
free region. The reference orbit enters the body of 
the magnet (z/A) at the point where the field is 

B = 
C 

B. + G ,," tan$(z) dz 

and the gradient is G =aBy= 
c ax G cosB(z=A). Since it 

is customary to express transport matri_x elements in 
terms of Bc, Gc, we may substitute B. = Bc - G AtanRo, 

- Gc aB 
G = cosA in Equations (11) - (18). Ne note that $ 

0 

aB 
Changes abruptly at z = A because -$ 

inside the magnet. In terms of B, and 
becomes 

l+sin2S 
0 

6A cos30 
+ 

0 

changes to zero 

G c, (13) 

G A -.-A- 
3 T (19) 

cos 8 
0 

for G, = 0, welf$nd (20) agrees with previous calcu- 
lations of Cy. We also find that Cx agrees with 
Enge's result: The horizontal focal length of 

B 2 
the extended fringe field is, to order g , equal to 

that of a "hard edge" (A=0 edge effect) magnet of 
constant field Bc, which bends the reference orbit 
through the same angle as the extended fringe field. 
From (6) the "hard edge" magnet should have length 
A/(2cosA,) measured along the reference orbit. 

Equations (16), (17), however, contradict Enge's 
assertion that the dispersion caused by an extended 
fringe fLeld equals that of the "hard edge" magnet to 

B 2 
order up . 

0 
\v'e recover Enge's result only if wz 

neglect the edge-focusing contribution to Kx(s) in 

solving (15). 
BO 

Since Kx = asp sinso, the case B = 0 
0 

agrees with Enge. 

One would normally replace the extended fringe 
field of a combined-function magnet by the hard edge 
magnet with length A/2cosCJ, and gradient G,. The 
lowest order contribution to the focal length would be 
given by 

?i ‘P && 
0 

Comparing with (19), (20), we see that this underesti- 
mates the fringe field gradient by a factor sec2eo. 

The importance of these corrections to edge fo- 
cusing depends on the optical system to which they are 
added. To astess the effect on the NSLS rings, the 
program SYNCH ws used to compute tunes and chroma- 
ticities of the 700 MeV storage ring and booster. 
Table 1 shows the results for the 700 MeV storage 
ring. The leftmost column lists the fringe field 
length imneters. Under the heading "THICK" appear the 
tunes and chromaticities (labeled u and 5 respective- 
ly) calculated using the edge focusing matrices de- 
scribed here. Under the heading "THIN" are the same 
quantities, computed using Enge's edge focusing matri- 
ces. Both cases show a very large vertical tune shift 
as A increases from 0 to 0.3 meters. The disagreement 
between the two edge focusing approximations is no 

greater than one would expect for an order & 
0 

2 

calculation. Table II shows the same information for 
the booster synchrotron. The downward shift of hori- 
zontal tune in the thick lens case is caused by the 
sec2eo correction to the gradient term in the fringe 
field. The difference in horizontal chromaticity is 
numerically significant and important because the main 
quad and sextupole circuits do not allow independent 
control of vx, uy, 5, and 5,. The design chromaticity 
of the booster is t;x,y = + 0.5 so A& = -0.4 
caused by thick lens effects cannot be neglected. 

The author gratefully thanks E. Courant and E. 
Bozoki for their help in modifying SYNCH to include 
extra edge focusing matrices, and Sam Krinsky for many 
useful discussions. 

References 

1. Harald A. Enge, in Focusing of Charged Particles, 
A. Septier, Editor, Vol. 2, pp. 239-248, Academic 
Press, New York and London, 1967. 

2. K. Brown, "A First- and Second-Order Matrix Theory 
for the Design of Beam Transport Systems and 
Charged Particle Spectrometers," SLAC-75 (1967), 
pp. 71-76. 

3. S. Krinsky, NSLS Technical Note, in preparation. 
4. A. A. Garren and A. S. Kenney, LBL Internal 

Reports llf68 and 2174. 

Table 1. NSLS 700 MeV Storage Ring. 

A 
O.Om u 

5 
O.lm u 

F 
0.2m G 

5 
0.3m v 

E 

Table 2. NSLS Booster 

A 
o.om v 

5 
O.lm V 

5 
0.2m v 

5 
0.3m V 

5 

THIN 

3x32 
Y 

1.32 
-4.1 -5.4 

3.32 1.2231 
-4.1 -5.5 

3.32 1.1207 
-4.1 -5.6 

3.32 1.0111 
-4.1 -5.8 

THIN 
2:4295 2.3903 Y 

-3.0 -4.3 
2.4295 2.3630 

-3.0 -4.2 
2.4295 2.3358 

-3.0 -4.1 
2.4295 2.3088 

-3.0 -4.0 

THICK 

3.;2 
Y 

1.32 
-4.1 -5.4 

3.3194 1.2236 
-4.1 -5.4 

3.3177 1.1227 
-4.1 -5.4 

3.3149 1.0159 
-4.1 -5.6 

THICK 

2.;295 
Y 

2.3903 
-3.0 -4.3 

2.4273 2.3617 
-2.9 -4.3 

2.4204 2.3311 
-2.8 -4.3 

2.4082 2.2996 
-2.6 -4.2 
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