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RADIATION LOSSES DUE TO THE INTERACTION 
OF CHARGED PARTICLES WITH CONDUCTING BODIES. 

B. JECKO and A. PAPIERNIK * 

Abstract 

When particle bunches travel near perfectly con- 
ducting bodies. an electromagnetic field is induced 
which modifies the energy of the particles. In this pa- 
per we discuss the interaction of cylindrical bunches 
and toroidal perfectly conducting bodies. This problem 
is treated in terms of electromagnetic wave scattering 
As a matter of fact, when the electromagnetic waves 
that travels together with the bunch, illuminates the 
obstacle, a scattered electromagnetic field appears, 
which modifies the energy of the bunch particles. 
This scattering problem is treated directly in the ti- 
me domain, using space-time integral equations and SOL- 
ved by a time stepping approach. From the knowledge of 
the scattered field on the bunch axis, a transient po- 
tential seen by every particle is determined and the 
total energy loss of the bunch can be deduced. A nume- 
rical application for the case of toroidal obstacles 
with circular cross-section is presented. The transient 
potential obtained by beam-obstacle interaction is re- 
levant to the determination of the bunch longitudinal 
equilibrium distribution. Particularly in high energy 
storage rings this potential (as well as the beam ca- 
vity interaction potential) can modify the bunch shape 
and involve current limitations. 

Introduction 

When a particle bunch travels near perfectely 
conducting bodies, an electromagnetic field is induced 
which modifies the energy of the particles. 

The purpose of this paper is to present the inte- 
raction between a cylindrical bunch of particles and 
a toroidal perfectely conducting obstacle. The bunch 
and the obstacle are Located in the free space and have 
the same axis xx'. 

The interaction problem is treated in terms of 
electromagnetic wave scattering and gives (as beam ca- 
vities interaction studies {I} , {Z} ) a transient po- 
tential seen by every particle. This interaction poten- 
tial modifies the energy distribution and the total 
energy of the bunch. 

When bunches are expected to be short enough to 
ignore the presence of the vacuum chamber, this appro- 
ach can be applied to evaluate electromagnetic losses 
in particlesaccelerators and storage rings. 
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Scattering problem formulation 

Bunch-obstacle interactions can be deduced from 
the scattering of the E.M. wave (which travels together 
with the bunch) by the toroi'dal obstacle. As a matter 
of fact, when the bunch travels in free space (or on 
the axis of a perfectely conducting yacuw chamber), it 
generates an electromagnetic field (El, Hi). This field 
is a TM field (but TEM when particles velocity equals 
light velocity : v+y c). Because of circular symmetry, 
t$e magnetic field H1 has only the azimuthal component 
He" . 

pi +i 
When this incident wave (E ,H > illuminates the 

perfectely conducting toroEdaL obstacle, it induces, 
on the vattereisurface S, a current with density 
vector J. Then J generates in all the space the scatte- 
r$d+field (Es, G) which is related to the total field 
(E,H) by : 

-+ 
E=g=2 ;J+;s 

Using Green function 16 land the boundary condi- 
tion on the surface S, we obtain c3) , 141 , {5) 
a space time integral equation verified by the azimu- 
thal component He (M,t) of the total magnetic field on 
the surface S 

(1) He (M,t)= 2 H; (M,t) 

+2lV 

with : 

- K(M,Mo,t)= 

i 

FP [ He(Mo,t’) 
(c) Jo 

%(M,Mo,t-t')dCo dt' 
0 

0 if c t & CD,, D21 

if ct & ID,, D21 

- (C) scatterer cross-section contour 

- D1 = M MO, D2 = M Ml0 ; M' o is the q iror image 

with respect to the ring axis (Fig. 1) 

- r is the distance form M to the axis 

- PV : Principal value of space integral 161 . 

- PF : Finite part of time integral {6) . 

The total magnetic field component H8 (P,t) at any 
point P of space can be deduced from lj3 (M,t) by : 

(2) H$,t)=H;@,t)+ 

-, +Using Maxwell equations, the total E.M. field 
(E,H) is obtained everywhere from the knowledge of 
He(W). 
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Evaluation of the bunch-obstacle interactions 
potential 

From the knowledge of HR(P,t) we obtain, using 
Maxwell equations, the total electric field Ef(P,t) 
at any point P of the space and, particularly, the 
Es(P,t) longitudinal component near the bunch axis. 

Then, the potential acting on a particle located 
at a distance r of the axis is defined by : 

V(r,to) = 
i 

+- 
Ez(r,z,z+tov) dz 

-m 

where t is the time delay from the first particle 
of the 'bunch. 

The transient potential can also be obtained di- 
rectery from the HB(M,t) component (81 : 

V(r,d = - Lo ,I. \ 
2r(r,z,Mo) 

c E r He (Mo,z+x-D) 

(Cl ds dx dCo 

with : -F(P,Mo)=FP I D2 a K 
an (P,Mo,T)dT, DI+D2 D- 

D1 O 2 

The energy loss i V(r,t)> for the whole bunch with an 
infinitely thin cross section is given by : 

<V(O,to) > = 
I 

+- 

V(O,to) I(to) dt 
0 

-m 

where I(to) is the current intensity. 

Numerical application 

This method is applied 
tacle interaction : 

to a particular bunch obs- 

- Particles Bunch : we consider a cylindrical bun- 
ch with radius a and length 1 which travels, with light 
velocity c, on the obstacle axis (z',z). The total char 
ge of the bunch Q is distributed on the cylinder surfa- 
ce. The azimuthal distribution is uniform. The longitu- 
dinal distribution is given by the charge density : 

p (r,z-ct) = 96(r-a) sin* T(Y(z-ct+l)-Y(z-ct)l 
va 1 

Y is the unit step function and 6 the Dirac function. 

- The obstacle : We have choosen a torordal per- 
fectly conduction obstacle with circular cross-section 

{fig.l} . 

- Results : 

a) First the magnetic field He(M,t) is obtained 
on the scatterer surface by solving the'integral equa- 
tion (2). Time evolution of HB(M,t) is given (fig.2) 
for differents points of the contour (C). The incident 
field which would have been present 0' in case of no 
obstacle gives the reference in time and amplitude. 

I , 

b-+ ~ \,&, i ~ o” ! 
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Figure 1 : Toroi'dal obstacle cross-section 
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Figure 2 : Time variations of the total magnetic field 
on the surface S. 

b) From these results the electric field is dedu- 
ced everywhere particularly on the bunch axis. The figs 
re (3) presents the time evolution of the electrical 
longitudinal component E (P,t) at a point P of the z'z 
axis. Because of causality principle (81 the field at 
the point P appears with the time delay AMTP 

c 

The bunch shape is also presented on this figure 
to identify the field which acts on every particle of 
the bunch. 

c) The transient potential or the energy loss as a 
function of the particle position inside the bunch, is 
presented on the figure(4)for a bunch of lOI particles 
with lenght 1 = 0,2 m. 
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Figure 3 : Time variation of the total electric field 
on the axis. 
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Figure 4 : Transient potential as a function of the 
particle position. 

Conclusion 

Bunch-obstacle interaction study has been regarded 
as a transient scattering problem in the particular 
case of circular symmetry. This method can also be 
applied to bunch obstacle interactions without symmetry 

151 but prohibitively Large computer times do not per- 
mit to consider bunches and obstacles with very diffe- 
rent sizes. 

The transient potential or the energy Lost by eve- 
ry particle of the bunch is easily deduced from the 
scattering problem. The comparison with bunch cavity 
interaction effects {2} , 18) shows that the bunch in- 
teractions with obstacles (or with large discontinui- 
ties of the vacuum chamber) induces losses and bunch 
shape modifications. This feature is particularly im- 
portant in high energy storage rings where bunch obs- 
tacles interaction contribute like beam-cavities inte- 
ractions to generate bunch lengthening. 
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