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Abstract 

Methods have recently been developed enabling one 
to describe charged particle beam transport in terms of 
a Lie algebraic representation. We show how this 
formulation may be applied to the problem of computing 
transfer maps (including aberrations) for the beam- 
line elements common in accelerator physics. In 
addition, explicit calculations are carried out for a 
variety of common elements including drift sections, 
static magnetic dipole, quadrupole, and sextupole 
lengths, and dynamic sectons such as bunchers. The 
resultant mappings are displayed, and provide a 
succinct basis for efficient numerical computation 
of charged particle beam behavior during transport. 

Introduction 

Since their introduction over twenty years agoi, 
matrix methods have proven extremely useful in the 
description of charged particle beam behavior. In 
principle, matrix methods can be used to treat aber- 
rations of arbitrarily large order. However, their 
application to aberrations beyond the lowest order 
requires the storage and manipulation of quite large 
matrices. For example, if current matrix methods 
were extended to work through the general third order 
at fixed momentum, the use of 34x34 matrices would be 
required. If chomatic effects were included as well, 
55x55 matrices would be required. 

In working with expansions beyond second order, 
it appears to be useful to take into account the 
Hamiltonian character of the equations of motion. 
Because the equations of motion are Hamiltonian in 
form the relation between incoming and outgoing beam 
coordinates must be a canonical transformation, and 
consequently many of the matrix elements required for 
a matrix method are in fact related by a complicated 
set of linear and nonlinear identities. This redun- 
dancy can be conveniently avoided by the use of Lie 
algebraic methods.2 For example, again working 
through third order, the use of Lie algebraic methods 
would require the storage of 65 parameters in the 
fixed momentum case, and 120 parameters if all 
chromatic effects are included. Storage requirements 
over matrix methods are thus reduced by factors of 
approximately 18 and 25 respectively. 

The purpose of this note is to outline the use 
of Lie algebraic methods. The tools necessary for re- 
presenting canonical transformations in terms of a 
Poisson bracket Lie algebra will be described, and il- 
lustrative calculations for quadrupole and sextupole 
elements presented. Results for some other common 
beam line elements will also be given, and a compari- 
son to matrix methods made. Finally we indicate how 
such methods may be extended to arbitrarily high 
orders. 

Lie Algebraic Tools 

Consider a particle of rest mass m. and charge q 
moving through a beam line element. Let (x,y) denote 
its transverse displacement from the design orbit and 
iFPartial Support by DOE Contract DE-AS05-80ERl0666;AOOO 

parameterize the motion by the particle’s displacement 
z along the design orbit. The trajectory equations 
with z as an independent variable are then canonical 
in form, and can be obtained from the Hamiltonian3: 

K(x y t ;px py P,) f -c-1( :p,+q@ (x,y , t) :I*-mo2c4 

-c’ipx-qAx(x,y.t) !’ 

2 l/2 
-cZ~Py-4dyh,Y,t) 1 1 -qAZ(x,y, t) 

Here pt is a momentum conjugate to the time, and 2 
and + are the vector and scalar potential. ThLS 

Hamiltonian generates a mapping M which relates a 
particle’s coordinates X f T px ‘Tjy Ft as it leaves a 
beam line element to its coordinates x y t px py pt 
as it enters the element. See. Fig. 1. 

f e------ 

beam line element 

“M” 

x Y t 
Px py pt 

Fig. 1 The effect of a beam line element is to map 
a particle’s coordinates x,y,t,px,p ,p upon entry 
into their values X,y,F,F ,f; .6 asYthE particle 
leaves the element. ThisxisYde$cribed in terms of 
the action of a mapping M upon the coordinates. 

Because the equations of motion for the trajectory 
with z as an independent variable are derived from a 
Hamiltonian, the mapping M from Ix y t;p, py pt} to 
{a 7 E;?, Fy Ptl is symplectic. 

To proceed further, it is useful to replace the 
pair (t, pt) by new variables (T,PT) representing 
deviations from the design arrival time at position 
a, to(z), and design energy, -pto. Such a transfor- 
mation is given by 

t = T + to(z) 

Pt = PT + pto (1) 

When this is done, all variables vanish on the design 
orbit, and are small for nearby orbits. The trans- 
formation (1) is canonical, and leads to the new 
Hamiltonian 

H(x Y T;P, py PT) = -c-11(pto+PT+4~)*-mo2c4 

-c*(Px-qAx)2-c*(py-qAy~2~l/* (2) 

-qA,-vo-l(PT+pto) 

where v. is the design velocity. 

2522 0018-9499/81/06CO-25221600.7501981 IEEE 

© 1981 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.



Corresponding to H we define a Lie operator :H: 
by the rule 

:H:g = [H,g] (3) 

where g is any function and [ , 1 denotes the Poisson 
bracket operation. It follows that the mapping M is 
given by the formal expression4 

M = exp(- .E :H:). (4) 

In general H has a power series expansion of the 
form 

H = H2 + H3 + H4 + .,. (5) 

where H, is a homogeneous polynomial of degree n. 
Consequently M can be factored into an expression of 
the form5 

M = exp(-e:G2:)exp(-t:G3:)exp(-P:G4:)... (6) 

Here the G, are also homogeneous polynomials of 
degree n. In particular, the Campbell-Baker-Hausdorff 
(CBH) formula gives the explicit expressions 

G2 = H2 , G3 = {[l-exp(t:G2:)I/C-%:G2:))H3 , . . . (7) 

In the derivation of (6) it has been assumed that 
the Hamiltonion (2) Is indenendent of z. However. it 
can be shown that an expression of the form (6) holds 
in the general case. 

Sample Calculations 

Consider a quadrupole of length 

% = a2(x2 - y2) 

and 

1 m. 2c4 
"2 = ?--?--ii 'T 
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+-I-(P +p 2p. x Y2) 
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e . Then 

- qa2(x2 - 

(8) 

Y2) 

(9) 
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Here PO is the design momentum. Upon evaluating (7), 
one finds 

c3 = 
ptOk 

2 IX2PT[22k - _ _._..~.~ sinih2iki 
Spot 

P 2P 
cash Zek] - H 

kp ' 
2:k + sinh Zek] 

0 

- Y2PT [2ek - sin 2Pk] - y [l - cos 2tk-j 
0 

2P o 24 

- Q [2:2ek + sin 2Lk]l + ptmoc 3 
(10) 

kp 2po5c6 
pT 

0 

where k z J2qa2IPo 

Next consider a sextupole of length a . Then 

A, - a3(x3 - 3xy3) (11) 

end 
0 24 

H3=-7 1 Pt m. c 3 --- 1 pt" 

Po5C6 
'T 2 p 3=2 'T ('x 2 + Py2) 
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upon evaluating (7) one finds 

0 o 24 
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The short sextuple approximation may 
be obtained by taking the limit E+O and XH3 + 

F3 = a3(x3 - 3xy3). In this case, one gets 

M = exp:F3: (14) 

Similarly, the expression for a drift of 
length E may be derived either from (8) and (10) or 
(12) and (13) by setting a2 = 0 or a3 = 0. Therefore 
for a drift of length II , G2 is as in (7) and (12) and 

0 
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pt 

3 = - 22 PT (px2 

2P. c 

o 24 

+ Py2) - 
Pt m. = 

5 6 (15) 
2P c 

0 

For a normal-entry dipole bend, it is most . 
natural to work in cylindrical coordinates. Let P , 
$ lie in the midplane, and let z measure displace- 
ments out of the midplane. The methods outlined 
above give the results 

M = exp(- +. :G2:)exp(- e. :G3:) (16) 

with 
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Here po and +o are the design bend radius and angle 
of bend, and r = p - p. is the deviation of the tra- 
jectory from the design radius. The expressions for 
other common beam elements, e.g. bunchers and 
solenoids, can be worked out in a similar manner. 

Comparison to Matrix Methods 

The first constraint placed on the method out- 
lined above is that it duplicate the results obtained 
by traditional matrix methods. We have chosen to 
benchmark our results against those employed In the 
computer code TRANSPORT. The transfer maps obtained 
by the above method for quadrupole, sextupole, dri!.t 
and normal entry dipole all give results equivalent 
to those obtained using the matrix theory on which 
TRANSPORT is based6. This is reassuring, as the 
validity of TI&VSPGBT has been confirmed by its wide- 
spread success in the design of beam lines and 
spectrometers. For example, one finds for a 
sextupole the result 

PS = Mp x = exp (-i:G2:) exp(-E:G3:)p x 

=P x - ek2po(x2 - y2) - e2k2(xpx - YPy) (18) 

t3k2 
- 7 (Px2 - Py2) 

Lie algebraic methods are similar to matrix 
methods in that an entire beam line may be simulated 
by concatenation of mappings for the individual com- 
ponents. Instead of products of matrices, however, 
one combines the exponents of Lie transformations 
using the CBH theorem. The result is a single Lie 
transformation which specifies the trajectory of a 
particle through the entire beam line. Such mappings 
may be utilized in a variety of ways beyond simple 
transport, such as studies of resonances2 or effects 
of beam-beam interactions7. 

Conclusions 

A method for deriving transfer maps through beam- 
line elements has been given, illustrative calcula- 
tions presented, and a brief catalogue of results for 
a variety of elements provided. Transfer map methods 
may be applied in much the same manner as matrix 
theories of beam transport. Moreover, Lie algebraic 
methods provide well-defined procedures for working to 
arbitrarily high order. One need only make the expan- 
sion (5) and work out the factorization (6). These 
methods therefore appear to provide a basis for the 
construction of efficient numerical codes for the 
computation of charged particle beam transport. 
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