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Sumnary 

We present a method for calculating space-charge 
forces suitable for use in a particle tracing code. 
We solve Poisson's equation in three dimensions with 
boundary conditions specified on an arbitrary surface 
by using a weighted residual method. Using a discrete 
particle distribution as our source input, examples 
are shown of off-axis, bunched beams of noncircular 
crosssection in radio-frequency quadrupole (RFQ) and 
drift-tube linac geometries. 

Introduction 

To determine the space-charge forces in an accel- 
erator particle tracing simulation we would like to 
solve the Poisson equation, 

99 = -p , (1) 

in a region V, with a homogeneous boundary condition 
on the surface S bounding the region, 

Q(;) = 0 on S . (21 
Inhomogeneous boundary conditions are not required 
because we assume that we know the external electro- 
static fields. We want to calculate the electro- 
static fields generated by the charged particle bunch 
in the presence of a perfectly conducting boundary. 
Both the source and the boundary will be assumed to 
be periodic in the z-direction. 

Method 

Expand the potential in a finite set of n known 
functions $i 

$ = aj$i . (3) 

(Repeated indices are summed over.) The coefficients 
ai are to be determined. The functions $i must form 
as complete a set as possible. (This will require n 
to be large.) Now define a residual R that has a 
volume and a surface part 

Rv = ai V2 $i + p , 

Rs = ai$i . (4) 

These residuals are zero when Eqs. (1) and (2) are 
satisfied. The method of weighted residuals' sets 
the weighted average of the residual to zero, result- 
ing in n conditions on the ai. 

0 = J dV(aiv2$i+p)wj 
V 

/ 
+ w dSai$iWj , j=i,---,n (5) 

S 

The wj(Z) are the weight functions and w is a weight 
that can be adjusted according to the desired relative 

importance of the volume and surface terms. Equa- 
tion (5) may be written in matrix form as 

Mij aj = ST , (6) 

where the matrix Mij and the source vector Si are 
given by 

Mij = / dV V2@iWj + W / dS$iwj 3 
V S 

. 
V 

(7) 

The matrix Mij depends only on the geometry and can 
be computed numerically, if necessary, for complex 
geometries. The source term depends on the charge 
distribution and must be computed at every time step 
in the particle tracing simulation. For discrete 
particle distributions, the source vector is simply a 

sum over particles of the quantity -Wi(Zp) where 

2, is the particle coordinate. Because we must 
invert the matrix to solve for the coefficients ai 
in Eq. (6), it is important to choose expansion func- 
tions that are linearly independent. 

We will consider two types of weighted residual 
methods. The first is the least-squares method in 
which wi = aR/aai. With this choice, the condi- 
tion of Eq. (5) minimizes the quantity jdVRV* + 
wldSRS'. The second type of weighted-residual 
method is the Galerkin method in which w' = @j. 
With this choice the condition of Eq. (53 becomes 
0 = JdVRV$i + wldSRS@i. This procedure finds 
the correct solution by requiring the residual, which 
is zero for the exact solution, to be orthogonal to a 
(nearly) complete set of functions, the expansion 
functions themselves. The Galerkin method is prefer- 
able for our problem for two reasons. First, it is 
easier to calculate the matrix and source term because 
the weight functions do not involve Laplacians of the 
expansion functions. The second reason is related to 
the fact that because the finite set of expansion 
functions is not complete, both methods give only 
approximate solutions. As mentioned above, the 
least-squares method minimizes the error in the 
square of the residual. This means that the error 
in the fitted charge density, -aiV2& is minimized. 
But we are interested in the field generated by the 
charge; that is, we would like to minimize the error 
in -aiV+i. We can show that the Galerkin condition 
minimizes (dV(aiVQi - V$)', provided that the 
expansion functions vanish on the surface S. The con- 
dition that the $i vanish on the boundary is easy 
to satisfy for our examples. Furthermore, because the 
$i vanish exactly on the surface, there is no danger 
from the dynamical effect of beam-wall interactions. 

Thus we consider the following Galerkin problem 

Mij = Mji = / dV V2$i +-j, 

rv 

Sj = dVp@i - 
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For the case of a cylindrical boundary condition we 
use the following expansion functions (in polar 
coordinates) 

tJi(r9e,Z) = [l-e,'3 (kIni i:l: J 1~~~:~~::: 
:/ (9) 

where L iS the period length and r. is the radius 
of the conducting cylinder. For the RFQ structure, 
we multiply the above by the RFQ factor 

[ 

2 
F = (l-A)(;) 

2 
cos2BtA cos2nz/L 1 -1 (10) 

which causes the $i to vanish on the RFQ vanes. 
We use the notation of Ref. 2 in which a is the mini- 
mum vane radius and A is the acceleration efficiency 
parameter (A = 0 for no vane modulation). 

If the expansion functions are ordered SO that 
all functions with a given z-harmonic are grouped 
together, the matrix of Eq. (8) becomes block-diagonal 
for the case of the cylinder. The number of blocks 
is 2k,,,+ 1 where km,, is the highest z-harmonic. 
This problem is equivalent to 2kmax + 1 transverse 
problems in which only small (95 x 95 in our examples) 
matrices have to be inverted. For the RFQ case on 
the region r < ro, the matrix has five block diag- 
onals. To solve this system we use the following 
iterative procedure. Decompose the matrix into two 
parts 

M = MD + MR (11) 

where MD is the block-diagonal part and MR is the 
remainder of the matrix. The solution (expansion co- 
efficients) can be obtained by iterating using the 
following relation 

aI+i = ~0-1 (S - MRaI) . (121 

The subscripts on the a's are the iteration numbers. 
Only the easy-to-invert matrix MD has to be inverted 
in this procedure. 

Testing 

We used the following charge-density distribution 

1 - r2 t r4/4 , r Q 21/2 

, r > 21’2 

where 

2 2 2 
;2 = x-xc (-) t q.) + (2) 

xO 0 0 

(13) 

(14) 

in which the bunch center is at (xc,yc,zc) and the 

bunch half-lengths are 21"xo, 21'2yo, and 21'2zo. We 

transform this charge distribution to a discrete 
particle distribution, which would be found in a 
particle tracing code, as follows. Choose a particle 

coordinate 2 within V at random and evaluate p(z), 
which ranges from zero to one in our example. 

Now choose another (a fourth) random number between 
zero and one. If this new random number is less 

than p(z) we keep ? as the position of a particle in 
our discrete distribution. Otherwise, this particle 
is rejected and we start again by choosing a new par- 
ticle position. This orocedure is continued until 
the deiired number of particles (10 000 in our 
examples) is reached. The result is a discrete dis- 
tribution that in the large particle-number limit has 
the charge distribution p. 

Using this source distribution we can form the 
source vector and solve Eq. (6) to get the coeffi- 
cients ai. Because we can compute the gradients of 
the known expansion functions +i, the desired 
approximation for the electric field is 

Ea = -ai Oh . (15) 

But the exact field is unknown,so we have no means of 
determining the accuracy of this approximation. We 
can,however, compute the approximate charge density 

Pa = -ai V2$i , (16) 

which can be compared with the input density p of 
Eq. (13). We can form a discrete particle distribu- 
tion from oa in the same manner that we did from 
the input density o. Then, scatter plots of p and 
pa can be directly compared. Because the approxi- 
mation is not exact, there are regions of negative 
charge density so our scatter-plot output consists of 
two plots, one for each sign of charge. 

Examples 

We did two examples, one with a circular cylin- 
drical boundary condition, which would be applicable 
to a drift-tube linac, and one with an RFQ boundary 
condition. Except for the RFQ factor F, the same 
expansion functions were used for both cases. The 
maximum power of r was n = 8, the highest B-harmonic 
was m = 8, and the highest z-harmonic was k = 6. For 
the lower values of n (n < 3), only those m-values 
were used that made these terms smooth (powers of x 
and y). Higher n-value terms were permitted to have 
discontinuities in higher derivatives at the origin. 
The number of expansion functions was 1235 (95 trans- 
verse x 13 z-terms). 

We used the same source for both examples. The 
beam was centered at x = 0.37, y = 0.26, z = 0.50 
(r = 0.45, 6 = 35”). 
2!/2y, = 0.42, and 2 

he half sizes were 21/2xo= 0.71, 
l/J,, = 0.49. 

Cylinder 

The radius of the cylindrical region was r. = 1.3 
and its length (period) was L = 2. Figure 1 shows 
scatter plots with outlines of the region boundary. 
From left to right, we see the projections onto the 
x-y, z-x, and z-y planes. The first row shows 2000 
of the 10 000 particles used to represent the input 
distribution. The second row shows the equivalent 
plots for a ZOOO-particle representation of the 
fitted charge distribution Eq. (16). Only positive 
charges are siiown here. The third row shows the 
scatter plots for the negative charge distribution 
arising from the errors in the approximate solution. 
There are 176 negative particles'that correspond to 
the 2000 positive oarticles. These scatter plots are 
very sensitive ind;cators of errors in the fitted 
charge distribution. (Because the particle density 
in the region of the bunch is so hiqh, the eye cannot 
distinguish how many particles are Fn-the black 
region, while the other particles in the volume, 
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Fig. 1. Scatter plots for the cylindrical boundary 
case. The first row shows 2000 of the 
10 000 particles used to represent the input 
distribution. The second row shows a 
2000-particle representation of the positive 
part of the fitted charge distribution. The 
third row shows the scatter plots for the 
negative charge distribution arising from 
the errors in the approximate solution. 
There are 176 negative particles. 

which correspond to an error charge, become rela- 
tively more apparent. Also, these error particles 
are projected from the whole volume of the region, 
which is much larger than the bunch volume, thus 
enhancing the visibility of the charge errors.) 

Figure 2 shows the charge-density profiles at 
the bunch center. For example, the x-profile is 
pa(x,yc,zc) plotted as a function of x. Both 
the exact and fitted profiles are plotted. In this 
case, the fit is so good that the curves are almost 
indistinguishable. 

Figure 3 shows equipotential contours (fitted 
potential) for various sections along with the bound- 
ary outline. The contours represent 0.9, 0.8, 0.7, 
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Fig. 2. ChaTge density profiles at bunch center for 
the cvlindrcial boundary case. For example, 
the first plot shows p(x,yc,zc) plot- 
ted as a function of x where the bunch center 
is at (xc,yc,zc). Both the input 
charge distribution and the approximate solu- 
tion are plotted. The curves are almost 
indistinguishable in this case. 
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Equipotential contours various sections for 
the cylindrical boundary case. The con- 
tours represent 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 
0.3, 0.2, 0.1, and 0.05 of the maximum value. 
Only the x-y section at z = 0.5 has all ten 
contours because only this section contains 
the bunch center. Others have lower 
potentials. 

0.6, 0.5, 0.4, 0.3, 0.2, 0.1, and 0.05 of the maximum 
value. (Only the x-y section at z = 0.5 has all ten 
contours because only this section contains the bunch 
center. Others have lower potentials.) The period- 
icity in z of the solution is evident from this 
figure. 

RF9 - 

For the RFQ example, we used a minimum radius of 
a = 1.0 and an acceleration efficiency of A = 0.18 
(corresponding to a modulation factor of m = 1.2). 
Only the first iteration of Eq. (12) (block-diagonal 
part only) was used. The iteration procedure con- 
verged,but did not improve the results. The integrals 
in the maxtrix elements were done numerically and nu- 
merical errors may have caused this effect. Figure 4 
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Fig. 4. Scatter plots 
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rupole (RFQ) case. The first row shows 2000 
of the 10 000 particles used to represent the 
input distribution. The second row shows a 
2000-particle representation of the positive 
part of the fitted charge distribution. The 
third row shows scatter plots for the 
negative charge distribution arising from 
the errors in the approximate solution. 
There are 1543 negative particles. 
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shows the projections of the particles on the x-y, 
z-x, and y-z planes. The cross sections of the RFQ 
region in these planes are shown also. Because the 
RFQ region is not constant along the projection 
direction, some of the particles lie outside the RFQ 
outline on the projection surface. As in the case of 
the cylinder, the first row shows a 2000-particle 
sample of the input distribution and the second row 
shows a ZOOO-particle representation of the positive 
part of the fitted charge distribution. The third 
row shows the scatter plots for the negative part of 
the fitted charge distribution. There are 1543 
negative particles. 

Figure 5 shows the input and fitted charge- 
density profiles for the RFQ case. Figure 6 shows 
the equipotential plots at various sections for the 
RFQ case. 

Q--ii-:\~Qegi--JQmi&?-j 
-1.5 0.0 L.5 -I 5 0.0 1.5 -LO 0.0 1.0 

x Y z 

Fig. 5. Charge density profiles at bunch center for 
the RFQ case. For example, the first plot 
shows p(x, y,,z,) plotted as a func- 
tion of x where the bunch center is at 
(Xc,Yc,Zc). Both the input charge 
distribution and the approximate solution 
are plotted. 

Discussion 

Particle tracing codes for accelerator simula- 
tion require three-dimensional space-charge calcula- 
tions in various geometries. The examples here show 
that the proposed method may be practical for such 
calculations. The cylindrical boundary case is 
especially accurate. Calculation of the maxtrix 
requires 1.3 s on a Cray-1 computer. Evaluation of 
the expansion coefficients takes about 12.5 s for 
10 000 particles (mostly for evaluating the source 
vector, which has not been computationally optimized 
yet.) The RFQ case will require further develop- 
ment. It is evident that present results are not 
as accurate as for the cylindrical case, and the 
matrix computation requires much more computer time 
(- l/2 hours), because it is done numerically. 
We can, however, calculate the RFQ maxtrix analyt- 
ically and will do so in the future. Besides 
drastically reducing computer-time usage,this should 
also improve the accuracy of the fit. (Fewer integra- 
tion points in the numerical integration noticeably 
worsens the fit.) With this improvement, the off- 
block-diagonal maxtrix elements in the iterative 
procedure may further improve the fit. In all cases 
tried the statistical error in the coefficients, that 
is due to the finite number of particles in the dis- 
tribution, is small compared to the fitting errors. 
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Fig. 6. Equipotential contours at various sections 
for the RFQ case. The contours represent 
0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 
and 0.05 of the maximum value. Only the x-y 
section at z = 0.5 has all ten contours 
because only this section contains the bunch 
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