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Summary 

A multi-particle two-beam (strong-strong) simulation 
program has been written for investigation of the beam- 
beam effect in ‘LEP’. The motion of the superparticles 
is treated in six-dimensional phase space and the ef- 
fects of quantum excitation and radiation damping are 
included. The effects of perturbations to the super- 
periodicity (errors) are also included. Non-zero dis- 

persion at the RF cavities allows computation of single 
beam synchro-betatron resonances. These resonances may 
also be driven by the beam-beam interaction either by 
non-zero dispersion at the interaction point or by the 
longitudinal motion of the interaction ‘point’ between 
a particle and the centre of the ‘other’ beam due to 
the synchrotron motion of the particle. After each re- 
volution the parameters influencing the beam-beam force 
(e.g. the beam dimensions and the beam current) are re- 
evaluated in order to simulate a real situation. For 
the beam-beam force an elliptical beam with Gaussian 
charge distribution has been assumed. The computation 
of this force is speeded up by using tabulated values 
of the complex error function and a fast interpolation 
procedure. The ‘beam-beam limit’ is shown to be a 
function of many machine parameters but is always sig- 
nificantly below the assumed maximum value of 0.06. 

1. Introduction 

An important limitation of electron-positron sto- 
rage rings results from the electromagnetic forces 
which the bunches of one beam exert on the particles of 
the other beam during collision. An analytical descri- 
ption of the limitations imposed by this beam-beam in- 
teraction does not yet exist, although several attempts 
have been made at computer simulations1B2>3 of the 
effect of a strong beam on a weak particle. Here the 
emphasis has been on the simulation of a real machine 
(strong-strong) with coupling mechanisms between longi- 
tudinal and transverse motion, aperture limitat ions, 
and the inclusion of perturbations to the superperiodi- 
city. 

A faster technique has been developed for the cal- 
culation of the beam-beam ‘kick’. This involves inter- 
polation between tabulated values of the complex error 
function and allows re-evaluation of the beam-beam 
strength after each collision. 

2. Simulation Technique 

The initial distributions of a large number of 
particles (typically 200) in the three phase planes are 
random with pre-specified variances. Each particle in 
each beam is ‘tracked’ through (i) an RF cavity, (ii) 
a beam-beam interaction and 
machine arc. This procedure ‘Yi’,e~ea’,~adye~~taill ‘efacha 
beam has completed one turn. The position of each par- 
ticle is then compared with aperture limitations (typi- 
cally 10 a) and those particles which fall outside are 
excluded from further tracking. The remaining part ic- 
les are then used to recalculate the beam current, the 
specific luminosity, the beam variances and hence the 
new beam-beam kick parameters. This cycle is repeated 
until the ‘beam’ has been circulating for about 1.5 
damping times. 

2.1 RF Cavity 

The energy gain in traversing an RF cavity is 

eV(@ ,$s) 

nERF = nw (1) 

where V($,@,) is the voltage seen by a particle at 4; 
for the normal case 

V(6,@,) = C 
( 

sin($+ps) - sin#, 
) 

(2) 

Each RF station may have a different V($, $s). The 
change in betatron amplitude (horizontal or vertical) 
is 

AyRF = - D A% 
YRF y-- 

S 

(3) 

where DRF is the dispersion and may be different in 
each station, 
Es is the energy of the synchronous particle. 

2.2 Beam-beam 

The integrated kick given to a particle from a 
three-dimensional Gaussian beam is (here the vertical 
equations are given, the horizontal are similar): 

2 @a = 22 - -~- 2Nre 20 2+t A-! ds (jt 
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Equation (4) was evaluated numyically and compared 
with the two-dimensional equation _.. _---- 

Azib = ? &&& w (;,;,~*:~t,) - a$- ?$ - T$) 

*(::;;::) (5) 

where w(x+is) is the complex error function. 

It was found that for all reasonable accelerator 
parameters equation (5) was accurate to around .2%. 
In order to speed up the calculation of the beam-beam 
kick, a table of values of w(x+iz) is computed using an 
accurate algorithm5. During the simulation the w(x+iz) 
is evaluated by fast interpolation6 between the tabula- 
ted values. The accuracy of the interpolation proce- 
dure is better than 10v3. For particle positions which 
fall outside the range of tabulated values the accurate 
algorithm5 is used. 

In equation (5) x and s are the displacements bet- 
ween the particle and the centre of gravity of the 
other beam and are given by 

6E 
Y 

= yg f: ys + DYi Es 

where y is the betatron displacement 
yi is the separation between the centres of the 

beams 
and Dyi is the dispersion at the interaction point. 

Both ys and Dyi may be different in all interactions. 
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2.3 Transition between Collisions 
Table 1 : Perturbat ions 

In the absence of synchrotron motion the transi- 
tion matrix is given by 

e- 5 (:+ +J =[I; ;;;) (7) 

Y 

where ts is the time between collisions and ‘y is the 
transverse damping time, 
each interaction point). 

(py may be different between 

In the presence of synchrotron motion the py is 
modulated at synchrotron frequency by a non-zero chro- 
maticity and the point of interaction between a bunch 
and an off-energy particle is displaced by 

c 6E 
Ain = A$nml - - - 

4Yt2kb Es 
(8) 

where subscript n denotes the number of the collision. 
The transition matrix between collisions is then 
I 

(9) 

Longitudinally the transition of a machine arc is 
accompanied by an energy loss and a phase change given 

by 

AE = al6E + a26E2 + a36E3 + . . . . (IO) 

xh 6E 
A$ = -- 

yt2kb Es 
(11) 

In the absence of non-linear losses all coefficients 
except al in equation (10) are zero. 
higher order wigglers7 

For the study of 

ated and ‘switched on’. 
these coefficients may be evalu- 

2.3.1 Quantum excitation. Quantum excitation is 
simulated by adding a random number (Gaussian distribu- 
tion with a mean of zero and a given variance) to the y 
co-ordinates once per traversal of an arc. The nns 
values for the distributions are 

(12) 

where oyss 
in x, 

is the steady state (unperturbed) beam size 
z or 6E and calculated from the radiation inte- 

grals of the machine lattice. 

3. Discussion of Results 

Based on survey errors8 and other considerations a 
set of superperiod perturbations was calculated (see 
Table 1). Unless otherwise stated, other perturbations 
were set to zero. The perturbations for each interac- 
tion were generated randomly with a mean of zero and 
the variances specified in Table 1. Aperture limits 
were arbitrarily set at ten rms beam radii in all three 
phase planes. Vertically the beam radius was taken to 
be the value obtained from ‘optimum’ coupling; 
lity the real aperture will be somewhat 

in rea- 
lar er. 

8 
Other 

parameters were taken from the LEP design at design 
energy with the high luminosity insertions. Many simul- 
at ion runs have been performed for LEP; in this section 

Parameter o horiz. 0 vert. 

phase advance/2n .047 .047 

beam separations 

dispersion in interactions (m) 

due to space limitations it is only possible to illus- 
trate a few of the most interesting results. 

In Fig. 1 the beam-beam was simulated with super- 
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Fig. 1 : Dependence on Qao; errorsin; long. modulation 
out. (Qxo = 70.31) 
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period perturbations included but without longitudinal 
modulation of the collision point. Each trace repre- 

sents one of the two beams. A loss of particles is ap- 
parent at a Q value of 74.35 corresponding to a coup- 
ling resonancelO driven by the beam-beam. The maximum 

obtained value of the beam-beam strength parameter Se 
is around .03 (Fig. lb), whereas the unperturbed value 
is .06. ‘Ihe vertical beam size on (Fig. lc) is seen to 
be increased a factor of = 1.5 in general and = 2.5 at 
the beam-beam coupling resonance. Fig. 2 shows a run 
with realistic parameters for LEP. The calculated 
‘errors ’ and the longitudinal modulation motion are in- 
c luded. It can be seen (Fig. 2a) that there is loss of 
particles at all tune values in the integer range. The 
losses in this case occurred against the vertical aper- 
ture limitation. Fig. 2b shows that the maximum 6s is 
around .025. Fig. 2c shows an increase in on of about 
a factor of 2. This increase would of course be grea- 
ter and the particle losses less had the vertical aper- 
ture limitations been retracted to say 20 oz. 

In Fig. 3 the proposed higher harmonic cavityll 
was switched on. It is clear that the situation is not 
improved. In fact the non-linear synchrotron motion 
seems to increase the effect due to beam-beam synchro- 
betatron resonances. 

Fig. 3 : Dependence on Qzo; bunch lengthening cavity 
on; errors in; long. mod. in 
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Fig. 4 : Dependence on beam current; errors in; long. 
mod. in (Qxo = 70.31 Qzo = 74.54) 

For the next series of runs the vertical tune va- 
lue was fixed and the intensity per beam was increased. 

Fig. 4 shows the simulation results for a realis- 
tic LEP. It is clear from Fig. 4a that above about one 
half of the design current (9.1 mA), beam losses occur. 
Fig. 4b shows that the 5s does not increase linearly 
and above a certain value even tends to saturate. For 
this particular tune value (which from previous runs 
was the best tune value in the integer range) the beam- 
beam limit sets in at around .020. 
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Fig. 5 : Dependence on beam current; errors out; long. 
mod in (Qxo = 70.31 QZo = 74.54) 

In Fig. 5 all machine errors were switched off, 
otherwise the conditions are identical to Fig. 4 condi- 
t ions. It is clear that even for this ‘perfect’machine 
the situation is not greatly improved, in fact from the 
current loss viewpoint there is a deterioration. In 
Fig. 5b it can be seen that sz increases more linearly 
until .017 and then decreases due to current losses. A 
retraction of the vertical aperture limitation would 
certainly allow 5s to increase somewhat more. 

4. Conclusions 

Realistic results seem to be produced by simula- 
tion of the beam-beam effect provided all known pheno- 
mena are included. 

For the range of parameters tested until now the 
simulation predicts a maximum beam-beam tune shift of 
around .025 for the LEP machine. This is significantly 
below the .060 design value. The simulation technique 
must now be used to search for regions which allow an 
increased & and for ways of suppressing the elements 
contributing to a reduction in the beam-beam limit. 
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