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Summary

A duality theorem between nonstatistical
and statistical beam phase spaces is found for
effecting the translation of all the formulae
and results of beam transport system in terms
of nonstatistical phase space directly into
the corrosponding ones in terms of statistical
phase space and vice versa.

Introduction

The basic goal of a beam transport system
design is to get the required phase space at
any point ( %, y, z, t) with given transport
elements and initial phase space. There are
two approaches to tackle the task, i.e. the
nonstatistical phase space and statistical
bhase space. The beam transport theory in
terms of nonstatistical phase space is more
intensively developed than that in terms of
statistical phase space. For example, it was
not until 1972 that C.R.Emigh first proved the
statistical two-dimensional phase space conser-
vation upon linear force assumption 2.

It turns out that the nonstatistical phase
Space and the statistical phase space satisfy
the same differential equation. Consequently,
we get the duality theorem between nonstatis-
tical phase space and statistical phase space,
by means of which all the formulae and results
of beam transport system in terms of nonsta-
tistical phase space can be translated directly
into the corresponding ones in terms of statis-
tical phase space and vice versa.

Transport of a single particle

The motion of a single particle in beam
transport system obeys Newton's second law:
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with relativistical relation between velocity
and momentum
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By Taylor expansion around the central
trajectory Xo(t), Pxo(t), Yo(t), Pyo(t), Z5(t),

Pzo(t) and keeping first-order terms x=X-Xo ,
Px=PX‘Pxo » y=Y-Y, , Pyo=Py"Pyo s 2=Z=Z4
pz=Pz'PZo y we get the equation of motion:
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where bj 3 are functions of time t.

With the 6-~dimensional phase space vector
V=(x,px,y,py,z,pz) and transport system matrix

b11""'b16
B= [.o0unan.. » . mathematically describ-
: b61""'b66

ing the transport elements, the equation of
motion (1) can be put in a compact form:
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Let V(i)(i=1,2,...,6) be any six linearly
independent solutions of differential equation
(2) and define the principal solution matrix
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which, by definition, satisfies the differen-
tial equation (2):
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Differentiation of the determinantof T(t)
gives
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The general solution of the differential
equation (2) is found to be V(t)=T(t)C, where
the constant vector C is defined by the
initial condition V(tg)=T(t,)C, giving the
final transport equation of a single particle:

Vi = TwT wVit) =R\t (5)

with transport matrix R(t)=T(t)T“1(t0).

By (4), we get the determinant of the
transport matrix £
jf‘., [ﬁh*b‘u+"'+j>“)df (6)
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Differentiation of (5) gives the differential
equation of transport matrix:
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Transport of a particle beam

——nonstatistical case

For the nonstatistical case, a particle
beam is analogized by a 6-dimensional phase
space ellipsoid Voﬂv==1,where the mathematical
description of the phase space is represented
by the matrix O-=[% ‘"%

OZIDZ(,
with its volume gﬂcr[_

Let the initial phase space be $Z05W4==1
and, by substitution of (5), get

At — P et .

VR*O:R V=Vo V =1 and, hence, the

transport equation of phase spaceﬁ
obH=ReH0;R® (8)
Combination of (6) and (8) gives the tran-

sport equation of the phase space volume:
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showing that if [, (h+ht th)db=0 | the
phase space volume is conserved.
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Remenbering by ,=bsz=b; =0 by (1), if
b22=b44=b66=0’ i.e. if the force along any
direction is independent of the momentum along

that direction, the phase space volume is

conserved.
Furthermore, if any of b22, b44, b66 is

nonzero, but b22+b44+b66=0, i.e. the diver-

p=0k 25 , PH _
gence of force 1is zero (z p=22 ¢ 5t _0)
the phase space volume is conserved.
Finally, if the divergence of force is
nonzero, but its integral is Zero(&fﬁﬁdh:o)

the phase space volume is conserved.
All these three cases give more relaxed

condition than the conservative system require-

ment by Liouville's theorem for phase space
conservation.

With account of (7), differentiation of
(8) gives ~

i0— AR5 R + Ro:2E = BRO:R +RCRB

Substituting (8) in it again, we get the
differential equation satisfied by the nonsta-
tistical phase space @O

d o ——
Tt= Bo + Bo (/0)
For any given initial nonstatistical phase
space O; and any given transport elements or
their mathematical description B{t), solution
of the differential equation (10) yields
nonstatistical phase space O~ at any position
and any time, thus fulfilling the task of the
beam transport system.

Tramsport of a particle beam

—— statistical case

For the statistical case, a particle beam
is descrived by a statistical 6-dimensional
rhase space
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where (xjxj> is the averaged value of xjxj

over the wholé phase space [} with any distri-
bution Y i.e.

&%y > =[x yde = [rndN=[xxdda, (2
upon the assumption of particle conservation

dN=yda =¢,d2,,
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By double use of (5) we get VV=ROVVA®
and averaging it over the whole phase space
with any distribution, find the transport
equation of the statistical phase space:

VWV >=R®OIVV>RD (13)
which is the statistical counterpart of the
nonstatistical equation (8).

With account of (7), differentiation of
(13) gives

~
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Substituting (13)*in it again, we get the
differential equation satisfied by the stati-
stical phase space {VV)>

d ~~ - /\—-J

FVVO=ByV> + BV > (14)
which is the statistical counterpart of the
nonstatistical equation (10),

Por any given initial statistical phase
space {(VyoVy> and any given transport elements

or their mathematical description B{t), solu-

tion of the differential equation (14) yields

statistical phase space <«VV > at any position
and any time, thus fulfilling the task of the

beam transport system.

*
F.J.Sacherer got a similar equation for a
special case. Cf. IEEE, NS-18 1105 {(1971).
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Duality theorem of nonstatistical

and statistical phase spaces

Equations (10) and (14) show that the non-
statistical phase space O~ and statistical
phese space (VV)satlsfy the same differen-
tial equation. By the existence theorem of
differential equation, if the initial condi-
tions differ with a constant k, 1i.e. CP_K<VM>,
so do the solutions, i.e. O-(t‘)—k<V(t)V(t)>
thus giving

Duality theorem of nonstatistical and
statistical phase spaces:

If Qs =k <VoVo
then O-(t)=k (V(t)V(t)} or 0‘—k <xi(t)

L(ED05)

By means of the duality theorem we can
translate all the formulae and results of the
beam transport system in terms of nonstatis-
tical phase space Q- direclty into the corres-
ponding ones in terms of statistical phase
space (VV > ., For instance, substitution of
(15) in (9) with cancellation of consiant k
gives

VoV |=

which is the statistical counterpart of the
nonstatistical equation (9).

zf (bt bt oo+ +heOdE
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In the following is given a list of some
important dual formulae of nonstatistical and
statistical phase spaces:

Nonstatistical phase space O~

Statistical phase space <V‘C”>

-
1. Phase space transport O =R®0; Rty

VoVi>=Rwwvih R®

2. Phase volume transport thffﬁ,,%,,f--"l‘ﬁ“)df

|o®i=lo; | e

% v i “oe df
l<V(t’)V(t)}|: kv V> | 8215 (B, tbgat et bys)

3. Phase volume of projections on 2-dimensio-
nal subspace (xy, Xj)

T %

> Keke>

A/ K> <G

4. Relations between the elements, assuming
xj-xi , Where i=1,3,5 with corresponding

j=2,4,6 respectively

of=20y EY'=24x%>
5. Beam emnvelopes
O X
6. Conditions of waist, assuming x .=x; ,
vwhere i=1,3,5 with corresponding j=2,4,6
respectively
On=0 Xy =10

)

7. Beam envelope
where i=1,3,5

equations, assuming xjsxi .
with corresponding j=2,4,6

respectively
O O XD <XGX>
2 (13 3] s 2 7
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8. Waist To waist transport, assuming xj— i’

vhere i=1,3,5 with corresponding j=2,4,6
respectively TS 9,) Ny ¢ L
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where 3, are characteristic length at
the first and second waist respectively.
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