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Summary 

A duality theorem between nonstatistical 
and statistical beam phase spaces is found for 
effecting the translation of all the formulae 
and results of beam transport system in term3 
of nonstatistical phase space directly into 
the corresponding one3 in terms of statistical 
phase space and vice versa. 

Introduction 

The basic goal of a beam transport system 
design is to get the required phase space at 
any Point ( x9 yt z, t) with given transport 
element3 and initial phase space. There are 
two approaches to tackle the task, i.e. the 
nonstatistical phase space and statistical 
phase space. The beam transport theory in 
terms of nonstatistical phase space 1 is more 
intensively developed than that in term3 of 
statistical phase space. For example, it was 
not until 1972 that C.R.Emigh first proved the 
statistical two-dimensional phase space conser- 
vation upon linear force assumption 2. 

It turn3 out that the nonstatistical phase 
space and the statistical phase space satisfy 
the same differential equation. Consequently, 
we get the duality theorem between nonstatis- 
tical phase space and statistical phase space, 
by means of which all the formulae and results 
of beam transport 3,ystem in term3 of nonsta- 
tistical phase space can be translated directly 
into the corresponding ones in term3 of statis- 
tical phase space and vice versa. 

Transport of a single particle 

The motion of a single particle in beam 
transport system obeys Newton'3 second law: 

dg=F;wZ,i?.~,~,t) 

g=F; ix Ywz~.~:,~, f) 

g=< iX,Y Z.R;',~X f) 
with relativistical relation between velocity 
and momentum 

g- ce 
dt -[EL+ r+ftrnq~ 
dL cr, 
lit -gtP,~t~'+m~c~]t 
dZ- 
ir~J+~~+~~+ m'c']f 

By Taylor ekpansion around the central 
trajectory X,(t), Pxo(t), Ye(t), Pyo(t), Z,(t), 
P,,(t) and keeping first-order terms x=X-X0 , 
px=Px-P,, , y=Y-Y, f pyo=Py-Pyo , 2=2-z, , 
Ps=P,-P, 0 ' we get the equation of motion: 

d$= o t&P, t o i-b,& t 0 f h,P, 

$&x tb p + b,,y +4,p, td,= ' hn 2x2 

d&z 0 +b,,p, t o +b& + 0 f b~bn 
(IJ 

$y,bux +.h,p, + be,y +bd *b,z +5~,p, 

dz - z- 0 -t b,p, t 0 -f 44 + 0 + kc 

dA-b x +bsrlv, tii,y +bwP, +&fblr~ 
tit- 6t 

where bij are functions of time t. 

With the &dimensional phase space vector 
V=(x,px,y,py,z,p,) and transport system matrix 

, mathematically describ- 

ing the transport elements, the equation of 
motion (1) can be put in a compact form: 

dV- n --B cvv (2) 

Let V(i)(i=l,2 ,...,6) be any six linearly 
independent solutions of differential equation 
(2) and define the principal solution matrix e- . 

(‘J(t) . ..x(%) 
T(t)= ;;')(tj . ..P,"J (t,, 

. , . . , l 

[P$J (r) l * .e'Q (t)J 
which, by definition, satisfies the differen- 
tial equation (2): 

-dT =BwT (31 CLLL 

Differentiation of the determinantofT 

g,. dxt6’ 
dt 

z(I) . . . z (6) 

Fy’ . . p 

t + 
. . G 

% (‘J , * . E (6) 

p, 0) . . , px’“’ 
y iI) . . y’6’ 

P, 
(0 , . p (6’ 

Y 

z 0) . . Z'bl 

d E"' df“ 
x-f' * *dt 

and integration back yields: 

I~+.\~~.,[ el,t(~,fb,,t...+b‘,)dt 
(4) 
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The general solution of the differential 
equation (2) is found to be V(t)=T(t)C, where 
the constant vector C is defined by the 
initial condltfon V(to)=T(to)C, giving the 
final transport equation of a single particle: 

v(t) = T(t,T-:&to) =Rit)V(i~ c5-) 
with transport matrix R(t)=T(t)T"(tO). 

BY (4), we get the determinant of the 
transport matrix 

,ft~~,+b,,+~-+b66,d~ 
IR(t)i=IT(~T-~~~,l=e~ (6) 

Differentiateion-of (5) gives the differential 
eouation of transport matrix: 

g = gg-‘=gvf= BRqy-& Bfl (7) 

Transport of a particle beam 

- nonstatistical case 

For the nonstatistical case, a particle 
beam is analogi.zEd by a 6-dimensional phase 
space ellipsoid I/v-'V=f,where the mathematical 
description of the phase space i8 represented 
by the 

with its volume 

Let the Initial phase space be E@-'q=f 
and, by substitution of (5), get 

~/!&--'-'R-'\/z-- v o-j/ = 1 and hence, the 
transport equation of phase space 4 

m=R&& (8) 
Combination of (6) and (8) gives the tran- 

sport equation of the phase apace volume: 
2/tc6,,tba+..~ +bd,ldf 

JCW I= Jo; le to 
showing that if ~~(t;,tb~,+-..tb~,,~t~ 0 

(91 
, the 

phase space volume is conserved. 

Remenbering b,, =bY3=b5?=0 by (1). if 
b22=b44=b664, i.e. if the force along any 
direction is independent of the momentum along 
that direction, the phase space volume is 
conserved. 

Furthermore, if any of b22, b44, b66 is 
nonzero, but b22+b44+b66=0, i:e. the diver- 
gence of force is zero 

the phase space volume is conserved. 
Finally, if the divergence of force is 

nonzero, but its integral is zero ($,p,~=o,) 

the phase space volume is conserved: 
All these three cases give more relaxed 

condition than the conservative system require- 
ment by Liouville's theorem for phase space 
conservation. 

With account of (7). differentiation of 
(8) gives 

Fy= $;czif +f?o;$=8fic&+Ro-.~ij 

Substituting (8) in it again, we get the 
differential equation satisfied by the nonsta- 
tistical phase space Q 

cm rt= Bo- t BG (IO) 
For any given initial nonstatistical phase 

space & and any given transport elements or 
their mathematical description B(t), solution 
of the differential equation (IO) yields 
nonstatistical phase space o-at any position 
and any time, thus fulfilling the task of the 
beam transport system. 

Tramsport of a particle beam 

-statistical case 

For the statistical case, a particle beam 
is described by a statistical 6-dimensional 
phase space 

(vv>= E yi; ~f;fljj ,(I/) 

where (xix-j> is the iveraged value of xixj 
over the whole phase space R with any distri- 
bution 9 i.e. 

<xg.,.>+~ jbdn =jipUv'=/w,~yyn, (121 
upon the assumption of particle conservation 
dh/= ‘/‘d-n = kd% , 

By double use of (5) we get I,/?=fi(tiV?&~ 
and averaging it over the whole phase spa% 
with any distribution, find the transport 
equation of the statistical phase space: 

<VQ>=Rw&>&~ (13) 
which is the statistical counterpart of the 
nonstatistical equation (8). 

With account of (7), differentiation of 
(13) gives 

Substituting (13),in it again, we get the 
differential equation -satisfied by the stati- 
stical phase apace<VV) 

$a'h=B<vh t B$> (I41 
which is the statistical counterpart of the 
nonstatistical equation (lo), 

For a= given initial statistical phase 
space (V,V,) ana any given transport elements 
or their mathematical description B(t), solu- 
tion of the differential eqsation (14) yields 
statistical phase space (IN> at any position 
and any time, thus fulfilling the task of the 
beam transport system. 

* 
F.J.Sacherer got a similar equation for a 

special case. Cf. IEEE, NS-19 1105 (1971). 
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Duality theorem of nonstatistical 

and statistical phase spaces 

Equations (10) and (14) show that the non- 
statistical phase space O- and statistical 
phase space <VV>satisfy the same differen- 
tial equation. By the existence theorem of 
differential equation, if the initial condi.2 
tions differ with a constant k, i.e.-Q=K<V$&, 
so do the solutions, i.e. O-(t)=k<V(r)V(t)), 
thus giving 

Duality theorem of nonstatistical and 
statistical phaze spaces: 

IfG=k cVovo7 
then @(t)=k <V(t)V($)> or %==k <X,(t)Xj(t))(lS) 

Nonstatistical phase space 0 

1. Phase space transport (pm = flct> Q if-w 
2. Phase volume transporta+),=jO,,e #b tb,,t-t6&d~ t, ,, 

3. Phase volume of projections on 2-dimensio-- 
nal subspace (Xi, Xj) 

J-7 

q$ 
7; q 

4. Relations between the elements. assuming 
xj=x; , where i=l,3,5 with co&espon&g 
j-2,4,6 respectively 

c+2 G7 

5. Beam envelopes 

% 
6. Conditions of waist, assuming x.=x; , 

where i=1,3,5 with corresponding j=2,4,6 
respectively 

q=o 
7. Beam envelope equations, assuming x.?x' J 1' 

where i=l,3,5 with corresponding j=2,4,6 
respectively 

1~~~ d’fii GY’-GF 
dt" (fi)' -+$ =O 

. Waist to waist transport, assuming xl=di , 
where i=1,3,5 with corresponding j=2;4,6 
respectively 

the first and second waist respectively. 

By means of the duality theorem we can 
translate all the formulae and results of the 
beam transport system in terms of nonstatis- 
tical phase spacetidireclty into the corres- 
ponding o_nes in terms of statistical phase 
space (VV> . For instance, Substitution of 
(15) in (9) with cancellation of constant k 
gives -+ 

I<vcdcw j =(<qg, ( e 
@,tba,+*** +&hit 

0 

which is the statistical counterpart of the 
nonstatistical equation (9). 

In the following is given a list of some 
important dual formulae of nonstatistical and 
statistical phase spaces: 

Statistical phase space <Vv", 

d/dh>=R(+l~v.Q~ fb 

~tvim7itt,~~=Ia&~ le fo 2~h,,tb++ b&t 
-- 

<%‘> 

(X;ti;Z = 0 

R(t,= JZ --(p m4 

! 
-I do+ pL @ 4 1 

p,,z= s? 
12 

) 
i 1 CXj~~ 

I,2 
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