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Abstract: Calculations on particle acceleration 
with laser-like modes in a spheroidal cavrity show 
that the energy transfer is acceptable only when the 
normal wall fields are appreciable. The transverse 
modes with potentially large electric field strengths 
can not be used for electron acceleration. 

High electric fields are obviously advantageous 
in powerful electron accelerators: for a given 
energy gain per particle, the device length is in- 
versely proportional to the maximum field; and the 
maximum current is roughly proportional to the field. 

We have proposed’a laser-inspired accelerating 
method termed the transverse RF accelerator; This 
concept tries to use laser-like electric fields that 
are ultimately limited by skin current heating: the 
peak electric field could then be up to 1 GeV/m. The 
transverse RF accelerator tries to get a high strength 
by using an accelerator cavity analogous to an optical 
resonator: The focusing of electromagnetic energy 
produces large fields along the cavity axis for 
manageable fields at the wall. This paper discusses 
the field structure as related to the acceleration 
mechanism, and reports on preliminary numerical results 
Important aspects that are not discussed here are the 
accelerator power requirements, the quality factor 
Q, the shunt impedance, and other cavity parameters. 
These can, in principle, be evaluated from the exact 
fields, but this has yet to be done. 

The accelerator cavity can be conceptually 
generated from a linear optical resonator consisting 
of two hollow mirrors. The resonator is then rotated 
about an axis in the focal pIane and extended axially 
to allow wavelengths comparable to cavity dimensions. 
The resulting cavity is the ellipsoid, shown in Fig. 1: 
The cavity exhibits radial focusing, from the cylindri- 
cal symmetry, but in addition there is axial focussing 
due to the curvature in the cavity walls. 

The novel points in the proposed transverse RF 
accelerator are threefold: i. use of laser-like 
higher order cavity modes in approximate resonance 
with relativistic electrons, ii. electric fields 
at the wall that are largely transverse, and iii. the 
accelerating electric fields on axis are enhanced by 
radial focusing. 

The numerical evaluations of the energy transfer 
performed up to now corroborate previous analytical’ 
results only in part. Most disturbing is that the 
energy transfer from the exact cavity fields is lower 
than previously estimated. 

The preliminary conclusion for our analyses is 
that the ultimate performance of such a cavity is . 
measured by the ratio AE/eEi L, and that this ratio is 
limited by a number of order unity. Here AE is the 
energy transfer to the electrons, L the cavity length, 
and EL a typical normal wall field. This value is 
comparable to that obtained in conventiona pill-box 
cavities; However, our cavity could have a factor of 
order unity advantage over conventional cavities 
because the fields here are focused axially: more 
work is needed to verify this statement. 

Although we know of no fundamental limitations 
indicating that the above ratio is a fundamental limit 
for all cavities, it appears for the moment that the 
decisive wa,’ to improve the ultimate accelerating 
gradient is to increase the breakdown limit for FL, 
e.g. by using more suitable wall materials or local 
magnetic insulation. 

The electromagnetic fields envisioned for our 
ellipsoidal cavity have the electric vector mainly 
parallel to the cavity axis, while the magnetic field 
is roughly perpendicular to the axis. These conditions 
are satisfied by one case that is exactly solvable.’ 
In this particular case all fields can be derived from 
one magnetic field component .B+ (see Figure 1). 

The free oscillations of the ellipsoidal resonator 
are solutions of 

VxVxB=k2B (11 - - 

A harmonic time dependence exp iwt is assumed, k = W/C; 

the boundary condition is that the electric field para- 
llel to the cavity wall be zero at the wall. 

The vector wave equation can be simplified to a 
scalar wave equation when the magnetic field is purely 
azimuthal.with the relation3 

- v x v x [% w] = % p -J] , (2) 

where e is the unit vector in the azimuthal direction 
-$ 

and $ = +(r,z) is rotationally symmetric. The - JI/r 
2’ 

term can be conceptually generated from the azimuthal 
mode $ cos Qi (m=I) in the Laplacian; the lowest azimu- 
thal mode in the vector wave eo,uation corresponds to 
the first mode in the scalar equation. 

Figure 1 

The transverse RF accelerator cavity with the major 
electromagnetic field components. 
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I-7) = l,O and the normal field is 

Figure 2 

The spheroidal coordinate system. 

The prolate ellipsoidal coordinate system is 
appropriate to the boundary conditions. The coordi- 
nates are defined as in Figure 2, 

x = r cos JI, y = r sin $ , (3) 

r = ; (&)4 (&1)4 ) 

z=jnE I 

where f is the focal distance. 

Equation (2) is separable in spheroidal coordinates, 
and the exact magnetic field is given as a product of 
two spheroidal wave functions 

Ba(E,nl = corm. Rln(h,S) Sln(h,rl) , (4) 

where n is the axial mode number, and h is the parameter 

h=Iff 
2 . 

The radial spheroidal wave function Rln(h,c) and 

and the axial function Sln(h,n) satisfy the same dif- 
ferential equation 

& (l-z*) $ + Xln - h*z.* - -!-- l-z2 1 u = 0 (5) 
but in two different regions, InI < 1 and 1 < 5 < m. 

The electric field component parallel to the cavity 
wall 5 = co= constant, is (from ‘7 X B): - 

En = - k I a (ha) 

The boundary condition that determines the 
resonance frequency4is 

$, = 0 =k [vIF;T; Rin(h,S)] = 0 . (6~) 

An acceptable approximation to the frequency can be 
obtained with the approximation’ 

d-- 5*--l Rln(h,Q 2 (k)+ ($ J1(s) 9 (7a) 

where J 1 
is the Bessel function of first order, 

s = s(h,n;:) 2 h $1 - 4 arc cos 5 -l (7b) 

and q = 2n-1. The factor (s/s!)+ is a slowly varying 
function of 5, that can be ignored. Then, approximately, 

1 
s = Jl,a. ; 

therefore, neglecting the last term in Equation (7b): 

h = ($-l)-$ arc cos Fil . (8) 

Here 9, = 1 corresponds to a half-wave cavity, and 
!L = 2 to a 3/2-wave cavity. 

The energy transfer from the fields to the accele- 
rating electrons is calculated by a Fourier transform 
over the fields on axis: The exact electric field along 
the axis is 

En = Ep Nn (l-n*)-’ Sln(h>vl > 

where E 
P 

is the peak field value, and N, is a normali- 

zation constant. Asymptotically, for h>>l, in a region 

of width h-’ about zero’ and’with r = n-l a 

En = Ep Nn H,(r)&) exp - h n*/* . 

Previous estimates’ of energy transfer were based 
on the counterpart of Equation (lo), for an approximately 
scalar version of Equation (1). The difference between 
the two calculations is small, namely the Bessel func- 

I 
tion zero jln is replaced by j,,. 

Figure 3 compares the energy transfer computed 
from the Hermite-Gaussian approximation (10) 
to the exact result using Equation (9) for 
the case F,, = fi (a confocal cavity). Shown is the 

normalized energy transfer AE,,/eEpX as function of axial 

mode number n, parametrized by R. The surprise here is 
that the agreement is not uniformly good: what is worse, 
the values from the Hermite-Gaussian approximation are 
too high, by a large factor. 
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Figure 3. 

Comparison between the Hermite-Gaussian analytical 
aooroximation (dashed line) and exact 

numerical data (solid iine). 
n is the axial mode number. 

The cause for this discrepancy seems to be that 
the Hermite-Gaussian approximation is not good in its 
“tails”: The actual fields at the foci decrease more 
rapidly with increasing frequency h, as roughly as the 
sqaure of the Gaussian tails. 

An exact formula for the energy transfer between 
the foci is obtained as follows:’ 

Multiply the differential Equation (5) for Sin by 

and integrate from n = -1 to n = 1. 

Integration by parts gives 

- T(l-n*) S;, 1 
1 

= 

-1 

& (I-n2) & + hln - h2n2 - 

1 - 
1-n* 1 Tdn . 

The bracketed operator working on T simplifies 
considerably; 

[I T = (l-n*)-’ (hln-h*) eihrl . 

(11) 

(12) 

(13) 

Therefore, the energy transfer integral U is 

dn = 

1 
IT’S-TS’) -1 (14) 

hln-h2 

1 . 

The term in square’brackets should be evaluated in the 
limit lrj + 1; in this limit the function S . In ls 

Sln(h,n) = Nln(l-‘I*)+ k3h/2 ) (151 

where k3 for large h is found as6 

k 
3 

= e-h hn/2 2(3n-1)/* 
9 

and the normalization factor Nln is such that the 

maximum of S ln is approximately unity: 

r 

Nln 2 d (n-l)! x/2 . 

(16) 

The sqaure brackets in (14), exclusive of the sinusoidal 
term, then become simply Nn kg h. The energy transfer 

integral becomes, approximately, 

d-- 

(n+s) /2 3n/2 
UZlI (n-l)! h 2 (18) 

-h sin 
e cos h /Oln-h21 : 

(the sin-function should be chosen for n even, cos- 
for n odd). 

Equation (18) should be used with caution, because 
the estimate for the maximum value of Sin contains an 

additional constant of order unity; however, the domi- 
nant behavior for large h is exp - h. This should be 
contrasted to the energy transfer’ from the field as 
approximated by Equation (lo), where the dominant 
behavior is exp - h/2. 

The conclusion from these energy transfer calcula- 
tions seems to be that higher order optical cavity modes 
couple to relativistic particles with a much lower 
efficiency than was previously thought. However, 
additional analysis and also numerical evaluations of 
the formulae involved are needed to corroborate this 
conclusion. 
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