SELF-CONSISTENT ANALYSIS
 OF THE SELF-RESONANT
 ELECTRON-CYCLOTRON LINEAR ACCELERATOR

John L. Vomvoridis
JAYCOR
Alexandria, VA 22304

The self-resonsant acceleration mechanism uses plane electromagnetic waves to increase the energy of the electrons in cyclotron resonance with the wave. The selfconsistent analys is shows that complete energy conversion is possible over a finite interaction length. A possible realization of this mechanism would use a $25 \mathrm{TW} / \mathrm{cm}^{2} \mathrm{CO}_{2}$ laser bean to accelerate a $25 \mathrm{kA} / \mathrm{cm}^{2}$ electron beam in a 50 kG magnetic field from 50 MeV to 7 GeV in 20 m with 65% conversion efficiency.

Introduction

The motion of charged particles (to be concrete, electrons) of rest mass m and charge -e under the joint action of a magnetostatic field B_{0} and an electromagnetic wave with frequency ω and propagation vector (wavenumber) k parallet to B_{0} depends on the frequency difference $\Delta \omega=\omega-\Omega / \gamma-k \beta_{,} c$, where $\gamma m c^{2}$ is the total electron energy, $\beta_{, 1} C$ is the electron velocity along B_{0}, c is the speed of light and $\Omega_{0}=e B_{0} / \mathrm{mc}$ is the nonrelativistic electron gyrofrequency. In general, the motion is oscillatory. However, for the case of plane waves ($n=k c / \omega=1$), the quantity of $\gamma\left(1-\beta_{u}\right)$ is conserved, since the electric and magnetic components of the wave are equal to each other, and therefore the energy and axial momentum of the electrons change at the same rate. (Gaussian units are used in all equations, with the exception of the equations with practical interest, where clearly noted MKSA units are used.) A consequence of this is that in the case of exact synchronism, i.e. $\Delta u=0$, this synchronism is maintained throughout the motion, regardless of the relative orientation of the electron transverse momentum $\gamma \beta_{\perp} m C$ and the wave fields, and unlimited energy gain is expected for all electrons.

This phenomenon ${ }^{1,2}$ (called self-resonance in Ref. 1) has also been confirmed experimentally ${ }^{3-5}$. Additional investigations have shown that a non-monochromatic pulse can still result in substantial acceleration ${ }^{6}$, that an additional invariant exists even for a time dependent wave amplitude ${ }^{7}$ or a wavepacket ${ }^{9}$, and that compensation of $n \neq 1$ by a spatial variation of the magnetostatic field is possible but not readily realizable ${ }^{9}$. Additional liter ature items include a covariant formulation and integration of the equations of motion ${ }^{10}$, the study of trapping and the suggestion of inertial acceleration if the diffractive index n is a function of the axial coordinate z^{11}, and the calculation of the appropriate variation $n(z)$ in the adiabatic approximation ${ }^{12}$. All these studies have treated the electrons as test particles and have omitted their feed-back on the wave.

To the knowledge of the author, no further investigations into this problem have been done. The apparent reason for this sudden lack of interest is associated with the difficulties of realizing a practical high power and high energy accelerator based on this mechanism. The microwaves, originally considered to drive the acceleration, do not have the power necessary to produce significant acceleration within reasonable distances and in addition have to be contained in a waveguide, which destroys the self-resonance (since $n<1$). However, the present-day high-power laser systems appear able to provide the necessary radiation source, and this mechanism has been rediscovered (Ref. 13 and independently by this author). As will be shown below, a $25 \mathrm{TW} / \mathrm{cm}^{2} \mathrm{CO}_{2}$ laser beam can in principle accelerate a $25 \mathrm{kA} / \mathrm{cm}^{2}$ electron beam from 50 MeV to 1 GeV in 20 m with 65% energy conversion (or to 1.2 GeV in 30 m with 80% conversion).

$$
\begin{align*}
& \frac{d}{d \zeta}\left(\gamma 3_{2}\right)=-\left(1-n \xi_{3}\right) \frac{\gamma B_{1}}{B_{3}}+\frac{\Omega_{0} B_{1}}{\omega}+\frac{d A}{d \zeta}, \tag{5}\\
& \frac{d}{d \zeta}\left(Y B_{3}\right)=-n A \frac{B_{1}}{B_{3}}-\frac{d A}{d \zeta} \frac{B_{2}}{\beta_{3}} \tag{6}
\end{align*}
$$

where $\Omega_{0}=e B_{0} / \mathrm{mc}$ is the nonrelativistic electron gyrofrequency in B_{0} and $\gamma(\zeta)=\left(1-\beta_{1}^{2}-\beta_{2}^{2}-B_{3}^{2}\right)^{-1 / 2}$ is the electron energy in units of the rest energy mc^{2}. Eqs. (1) - (6) form a complete set of equations that specifies A, n, ε, β_{1}, β_{2} and β_{3} as functions of ζ in terms of the assigned injection conditions at $\zeta=0$. It is convenient to supplement these equations with the equation for γ,

$$
\begin{equation*}
\frac{d \gamma}{d \tau_{7}}=-A \frac{B_{1}}{B_{3}} \tag{7}
\end{equation*}
$$

Due to the high nonlinearities involved, it does not appear feasible to integrate these equations analytically, and recourse to either approximate integrations or to numerical solutions appears necessary: In either case, it is useful to know that four first integrals exist. They are given by

$$
\begin{align*}
& I_{1}=\varepsilon^{2} \beta_{3}, \\
& I_{2}=\varepsilon_{3}^{2} \gamma_{3}+n A^{2} \\
& I_{3}=1_{2}\left[\left(n^{2}+1\right) A^{2}+\left(\frac{d A}{d \zeta}\right)^{2}\right]+\varepsilon^{2} \gamma \beta_{3}^{2}, \tag{8}\\
& I_{4}=\frac{1}{2}\left[\left(Y \beta_{1}\right)^{2}+\left(Y \beta_{2}-A\right)^{2}\right]-\frac{\Omega_{0}}{\omega} \gamma .
\end{align*}
$$

One can recognize I_{1}, I_{2}, and I_{3} as proportional to the conserved fluxes of particles, energy and momentum, while I_{4} is the spatial analog of the invariant in Ref. (7), where a time (rather than position) dependent field amplitude was considered.

Conspiciously absent from the above list of integrais of the motion is the quantity $R_{1}=\gamma\left(n-\beta_{3}\right)$. This quantity would have been an invariant if either both A and n were constant or they happened to vary in the relation $d A / d n$ $=-\gamma \beta_{3} / \beta_{2}$. In addition, one is interested in the quantity $R_{2}=\gamma\left(1-n \beta_{3}\right)$, since the value $R_{2}=\alpha$, where $\alpha=\Omega_{0} / \omega$, corresponds to exact synchronism. If in particular $I=1$, then R_{1} and R_{2} are equal to $R_{3}=Y\left(1-\beta_{3}\right)$, and the condition $R_{3}=\alpha$ leads to the self-resonant acceleration. As will be shown below, it is a fortunate coincidence that for the parameter values of interest, all these three quantities remain very close to the value a.

In practical applications, one is expected to use the most powerful radiation source available, i.e the CO_{2} laser with wavelength $\lambda=1.06 \times 10^{-3} \mathrm{~cm}$. Then for a magnetostatic field as strong as $B_{0}=100 \mathrm{kG}$, the value of Ω_{0} / ω is equal to $\alpha=10^{-2}$. It can be seen that the smalipst. value of γ consistent with $R_{3}=\alpha$ is obtained for $\beta_{1}=\beta_{2}=0$. Accordingly, to minimize the input electron energy, it is desirable to inject the electron beam parallel to the magnetostatic field. In addition, this choice minimizes the thermal beam spread and also simplifies the analysis. Hence, it will be assumed from here on that the initial values of the electrons are given by $\beta_{10}=\beta_{20}=0, \beta_{30}=$ $\left(1-\alpha^{2}\right) /\left(1+\alpha^{2}\right)$, and $\gamma_{0}=\left(1+\alpha^{2}\right) /(2 \alpha)$, where a subscript "o" denotes the values at $\zeta=0$. (If ions were to be accelerated, the value of α would have been several orders of magnitude smaller and would correspond to a prohibitively high value of γ_{0}, hence the choice of electrons as the particles to be accelerated.)

Of interest is also a feeling of the numerical values of two more parameters. These are I_{1} and A_{0}. It is trivial to relate them to the beam current density J and to the radiation energy flux S. One obtains

$$
\begin{align*}
& I_{1}=1.87 \times 10^{-5}\left(2 \lambda^{2}\right) \tag{9}\\
& A_{0}^{2}=3.66 \times 10^{-11}\left(S \lambda^{2}\right)
\end{align*}
$$

where $\lambda=2 \pi / k$ is the radiation wavelength and $J \lambda^{2}$ and $5 \lambda^{2}$ are expressed in Amperes and Watts, respectively. Obvious$1 y$, for $\lambda=1.06 \times 10^{-3} \mathrm{~cm}$ and any realistic choice of beam
current, the quantity I_{1} is many orders of magnitude smaller than unity, while A_{0} may be as large as 0.1.

First it will be shown that R_{3} remains very close to the value α. From the definition of I_{4} one can obtain the exact expression

$$
\begin{equation*}
R_{3}-\alpha=\frac{A_{0}^{2}-A^{2}+2 A \gamma \beta_{2}}{\gamma\left(1+\beta_{3}\right)-\alpha} \tag{10}
\end{equation*}
$$

The denominator is essentially equal to 2γ, while from Eq. (5) one can obtain $\gamma \beta_{2}=A-A_{0}$, if $R_{2}-\alpha=0$. Then, using also the definitions of I_{1} and I_{2}, it can be seen that $\mathrm{R}_{3}-\alpha$ increases very slowly, reaching the extremely small value $I_{1} / 2 \ll \alpha$, when $A=0$. Accordingly, R_{3} may be taken to be constant to very high accuracy.

To show that R_{1} and R_{2} are also essentially constant, it is observed that combinations of I_{2} and I_{3} give the relations

$$
\begin{align*}
& \text { ations } \\
& R_{1}-\alpha=\frac{1}{2 I_{1}}\left[-\left(n^{2}-1\right) A^{2}+\left(\frac{d A}{d \zeta}\right)^{2}\right], \tag{11}\\
& R_{2}-\alpha=\frac{n}{2 I_{1}}-\left[\left(n^{2}-1\right) A^{2}+\left(\frac{d A}{d \zeta}\right)^{2}\right], \\
& R_{3}-\alpha=\frac{1}{2 I_{1}}\left[(n-1)^{2} A^{2}+\left(\frac{d A}{d \zeta}\right)^{2}\right],
\end{align*}
$$

Since all electrons are assumed to start with $\beta_{10}=\beta_{20}=0$, the terms proportional to $(n-1)$ are not expected to be significant. Such terms originate from the component of the electron current across the electric field of the wave. This component is small, since under the assumed synchronism only the component driven by the electric field is expected to be significant. Accordingly, the dominant term is the one with the derivative $d A / d \zeta$. Hence, all three quantities in Eqs. (11) are bounded by $I_{1} / 2 \ll \alpha$.

The above discussion justifies setting $n=1$ and $R_{1}=R_{2}=R_{3}=\alpha$ in the equations of motion. Then, with $\gamma \beta_{2}$ $=A-A_{0}$, one can obtain expressions relating $\gamma B_{1}, Y B_{3}$ and A to γ, so that Eq. (7) can be integrated. A rather compact expression of the result is

$$
\begin{equation*}
\frac{\pi}{2} \frac{z}{z_{\max }}=\left(1+2 \frac{\gamma_{0}-\alpha}{\gamma_{\max }-\gamma_{0}}\right) \arcsin \sqrt{n}-\sqrt{n(1-\eta)}, \tag{12}
\end{equation*}
$$

where $\gamma_{\text {max }}=\gamma_{0}+A_{0}^{2} / I_{1}$ is the maximum energy (in units of the rest energy) attainable by the beam and $r_{i}=\left(\gamma-\gamma_{0}\right) /$ $\left(\gamma_{m a x}^{-\gamma_{0}}\right)$ is the efficiency with which electronagnetic energy is converted to kinetic energy. The value $n=1$ corresponds to $\gamma=\gamma \max$, i.e. complete energy conversion. This occurs at $z=z_{\text {max }}=\frac{1}{4} \lambda A_{0}^{2}(2 \alpha)^{-\frac{1}{2}} I_{1}^{-3 / 2}$.

Fig. (1) shows the dependence of η on $z / z_{\text {max }}$ for the most interesting case $\begin{aligned} & \text { max }>\gamma 0 \text {. At } \eta \lll l \\ & \text { this curve re- }\end{aligned}$ produces the standard proportionality $\gamma \propto z^{2 / 3}$. For larger values of 7 , the energy gain per unit length decreases somewhat, total energy conversion is nevertheless possible for a finite length of interaction. High conversion efficiency is possible for a substantially shorter

Fig. 1 - Conversion efficiency vs. normalized diatance
length. For example, at the length $z / z_{\max }=\frac{1}{2}$ the efficiency is $n=0.83$, while the length $z / z_{\max }={ }_{2} / 3$ corresponds to $r=0.93$.

For practical applications one can conveniently use Fig. (1), since in general it is expected that $\gamma_{\text {max }} \gg \gamma_{0}$. Given $\alpha-\Omega_{0} / \omega$, the maximum interaction length with a CO_{2} beam is given by

$$
\begin{equation*}
z_{\max }[\mathrm{m}]=\frac{800}{\sqrt{\alpha}} \frac{\mathrm{~S}\left[\mathrm{GW} / \mathrm{cm}^{2}\right]}{\mathrm{J}^{3 / 2}\left[\mathrm{~A} / \mathrm{cm}^{2}\right]}, \tag{13}
\end{equation*}
$$

in temis of the radiation beam energy flux and the electron beam current density. Of course, the highest electron energy attainable under complete conversion ($n=1$) is given by $E_{\max }[\mathrm{GeV}]=S\left[\mathrm{GW} / \mathrm{cm}^{2}\right] / J\left[\mathrm{~A} / \mathrm{cm}^{2}\right]$, plus the small amount of initial energy.

Discussion

To illustrate the potential of this acceleration mechanism, it is convenient to consider the CO_{2} radiation energy flux S and the electron beam current density J as functions of the initial and final electron energies, E_{0} and $E<E_{\text {max }}$, the interaction length $z<z_{\text {max }}$, the magnetostatic field amplitude B_{0} and the corresponding conversion efficiency 7 . These functions are shown in Fig. (2) for the particular choices $E_{0}=25 \mathrm{MeV}, E=1 \mathrm{GeV}$, $z=10 \mathrm{~m}$ and $\mathrm{B}_{0}=100 \mathrm{kG}$. Conversion to different choices is straightforward in view of the scaling relations

$$
\begin{align*}
& S \propto E^{3} B_{0} Z^{-2}, \\
& J \propto E^{2} B_{0} Z^{-2}, \tag{14}
\end{align*}
$$

which are exact in the limit $E / \eta \gg E_{0} \gg 0.5 \mathrm{MeV}$. The constraint $E_{0} \times B_{0}{ }^{-1}$ supplements the scaling laws.

As can be seen in the Figure, a $130 \mathrm{kA} / \mathrm{cm}^{2}$ electron beam in a 10 m long 100 kG strong magnetic field can be accelerated from 25 MeV to 1 GeV by a $200 \mathrm{TW} / \mathrm{cm}^{2}$ radiation beam at 65% conversion efficiency. If the interaction length is assumed equal to one Rayleigh length, then the radiation cross-section is $1 \mathrm{~cm}^{2}$, giving a radiation power of 200 TW , about 10 times more than what is readily available at the present time. This limitation can be overcome at the expense of the interaction length and the initial beam energy. Thus, using the scaling laws, it can be seen that increasing the interaction length to 20 m and the initial beam energy to 50 MeV , while reducing the magnetostatic field to 50 kG gives an acceleration to 1 GeV of a $25 \mathrm{kA} / \mathrm{cm}^{2}$ electron beam by a

Fig. 2 - Radiation energy flux S and electron beam current density J vs. conversion efficiency n for acceleration of electrons to 1 GeV from 25 MeV in a 100 kG field in 10 m . For different input parameters, the scaling laws can be used, see Eqs. (14).
$25 \mathrm{TW} / \mathrm{cm}^{2} \mathrm{CO}_{2}$ radiation pulse. The conversion efficiency is again 65%.

The acceleration process is not expected to have any serious limitations associated with temperature in the beam. The quantity of interest is $R_{3}=\gamma\left(1-\beta_{3}\right)$ and it is required that $\delta R_{3} \ll R_{3}=\alpha$. It can be seep that this requirement is satisfied by simply $\delta \gamma \ll\left(\gamma^{2}-7\right)^{\frac{1}{2}} \simeq \gamma$, while deviations from the assumed axial injection can be tolerated, provided $\left(\gamma \beta_{\perp}\right)^{2} \ll \frac{1}{2}$ initially. Similarly, the external magnetic field must be uniform enough so that $\delta \alpha \ll \alpha=\Omega_{0} / \omega$, which gives $\delta B_{0} \ll B_{0}$. Also, inhomogeneities in the radiation pulse amplitude are no problem either. Those associated with the modulation of the input pulse are insignificant due to the minute relative lag of tho electrons relative to the pulse (a few picoseconds). On the other hand, the dispersion of the beam is not particularly important, since the synchronism does not depend on the radiation pulse amplitude. Actually, the dispersion can be taken advantage of, in order to compensate for the increasing Larmor radius of the particles, as they acquire transverse momentum in the acceleration process. Finally, the extraction of the accelerated beam can be accomplished simply by adiabatically reducing the magnetostatic field to zero, thus converting to exclusively axial motion of the beam. In view of the above and the highly impressive expected performance of this acceleration process, it appears to be a viable candidate for a laser driven linear electron accelerator.

Acknowledgments

This work has been performed at and supported by the Naval Research Laboratory under Contract No0173-80-C-0253. The author wishes to acknowledge useful discussions with P. Sprangle and C. Kapetanakos.

References

1. A.A. Kolomenskii and A.N. Lebedev, Dok. Akad. wauk SSSR 145, 1259(1962) [Sov. Phys. Dok1. 7, 745(1963)]; Zh. Eksp. Teor. Fiz. 44, 261(1963) [Sov. Phys. JETP 17, 179(1963)].
2. C.S. Roberts and S.J. Buchsbaum, Phys. Rev. 135, A381(1964).
3. H.R. Jory and A.W. Trivelpiece, J. Appl. Phys. 39, 3053(1968).
4. A.P. Ishkov, Zh. Tekh. Fiz. 41, 607(1971) [Sov. Phys. Tech. Phys. 16, 471 (1971)].
5. M. Sumi, Jap. J. App7. Phys. 12, 1772(1973).
6. V.B. Krasovitskii and V.I. Kurilko, Zh. Tekh. Fiz. 36, 2210(1966) [Sov. Phys. Tech. Phys. 11, 1653(1967)].
7. B.U.0. Sonnerup, Phys. Fluids 11, 682(1968).
8. M.J. Laird, Phys. Fluids 14, 1282(1971).
9. V.S. Voronin and V.K. Kononov, Zh. Tekh. Fiz. 40, 160 (1970) [Sov. Phys. Tech. Phys. 15, 115(1970)].
10. E. Leer, Phys. Fluids 12, 2206(1969).
11. A. Orefice, Nuovo Cimento 638, 638(1969).
12. V.Va. Davydovskii and A.S. Ukolov, Izv. Vyssh. Uchebn. Zaved Fiz. 11, 79(1974) [Sov. Phys. J. 11, 1539(1974)].
13. W.B. Cotson and S.K. Ride, Appt. Phys. 20, 61(7979).

ERPATUM

In enuations (1A), the nuantities S and : are pronortinnal to Bn^{-1} (and not to R_{n}). Accondinaly, the examnle cited in the ahstract and above Fin. ? should read: $s=2$? Tw/cm? Con?, i=10.5
 $\eta=f r \%$.

