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The self-resonsant acceleration mechanism uses plane 
electromagnetic waves to increase the energy of the elec- 
trons in cyclotron resonance with the wave. The self- 
consistent analysis shows that complete energy conversion 
is possible over a finite interaction length. A possible 
realization of this mechanism would use a 25 TW/cm* CO2 
laser beam to accelerate a 25 kA/cm' electron beam in a 
50 kG magnetic field from 50 MeV to 1 GeV in 20 m with 
65% conversion efficiency. 

paper is a continuation of the earlier re- 
this subject, with the important added feature 

of self-consistency in the evolution of the narticles 

This 
search on 

and the wave. First, these self-consistent equations 
are oresented for both the wave and the electrons and 
the integrals of the motion are obtained. It is seen 
that y(l-B,,), although not an exact invariant, is con- 
served with very high accuracy for typical values of the 
parameters. The problem is reduced to a quadrature and 

Introduction 

The motion of charged particles (to be concrete, 
electrons) of rest mass m and charge -e under the joint 
action of a magnetostatic field BO and an electromagnetic 
wave with frequency 0: and propagation vector (wavenumber) 
k parallel to B0 depends on the frequency difference 
AW = w-R/y-kB,,c, where ymc * is the total electron energy, 
O,,c is the electron velocity along BO. c is the speed of 
light and R0 = eBO/mc is the nonrelativistic electron 
gyrofrequency. In general, the motion is oscillatory. 
However, for the case of plane waves (n=kc/w=l), the 
quantity of y(l-B,,) is conserved, since the electric and 
magnetic components of the wave are equal to each other, 
and therefore the energy and axial momentum of the elec- 
trons change at the same rate. (Gaussian units are used 
in all equations, with the exception of the equations 
with practical interest, where clearly noted MKSA units 
are used.) A consequence of this is that in the case of 
exact synchronism, i.e. Ati=O, this synchronism is main- 
tained throughout the motion, regardless of the relative 
orientation of the electron transverse momentum ??,mc 
and the wave fields, and unlimited energy gain is expect- 
ed for all electrons. 

the relation y(z) is obtained for the most interesting 
case of synchronism and initial axial iniection of the 
particles: Complete energy conversion is possible over 
a finite length, while extremely high conversion effi- 
ciencies occur at much smaller distances (e.a. 83% at 
half the maximum length). In addition, relations of 
practical interest are obtained, e.g. relating the inter- 
action length to the beam current and the laser power 
density, and the potential of the mechanism is demonsta- 
ted by-an example. Finally, the paper concludes with a 
discussion of peripheral issues, such as the effects of 
beam temperature, bf inaccuracies in the external field, 
and the diffraction effects of the radiation beam. 

Self-consistent Analysis 

This phenomenon "' (called self-tesynance in Ref. 1) 
has also been confirmed experimentally . Additional 
investigations have shown that a non-monochromatic pulse 
can still result in substantial acceleration 6, that an 
additional invariant exists even for a time dependent _. 7 ..n a. 

In this section the self-consistent equations are 
obtained for the steady state behavior of an electro? 
beam under the action of a uniform magnetic field BOez 
and a plane wave propagating along e with vector 
potential amplitude A(z) and prase -Z$l(z,t). The freq- 
uency and wavenumber are given by w = &$/at and 
k = -aqJaz. Because of the helical configuration of the 
inter?ction, it is convenient to introduce the unit vec- 
tors e,, g2 and &, where g1 and g2 are obtained by 

rotating ix and gy by the angle @. In terms of these 
unit vectors, the vector potential of the wave is given 
by Ai?*, the electric field by (w/c)Ac, and the magnetic 
field by kAG,- (dA/dz)i!. The field evolution is obtain- 
ed from Maxwell's equations. Faraday's law requires that 
w=const. Introducing the refractive index n(r)=k(<)c/w, 

,the wave quiver velocity A(<)=eA(r)/mc*, and the normal- _ . ., 

wave amplitude ' or a wavepacket ", ana that compensation 
of nfl by a spatial variation of the magnetostatic field 
is possible but not readily realizable'. Additional liter 

lzed distance ~=wz/c, and negiectlng tne electrostatic 
and maonetostatic self-fields of the beam. one obtains 

ature items include a covariant ftrmulation and integra- 
tion of the equations of motion the study of trapping 
and the suggestion of inertial acc;leration if the dif- 
fractive index n is a function of the axial coordinate 
z I, and the calculation of the apprytriate variation 
n(z) in the adiabatic approximation All these studies 
have treated the electrons as test particles and have 
omitted their feed-back on the wave. 

from Ampere's law the equations for A and'n, 

To the knowledge of the author, no further investi- 
gations into this problem have been done. The apparent 
reason for this sudden lack of interest is associated 
with the difficulties of realizing a practical high power 
and high energy accelerator based on this mechanism. The 
microwaves, originally considered to drive the accelera- 
tion, do not have the power necessary to produce signifi- 
cant acceleration within reasonable distances and in addi- 
tion have to be contained in a waveguide, which destroys 
the self-resonance (since n<l). However, the present-day 
high-power laser systems appear able to provide the neces- 
sary radiation source, and this mechanism has been redis- 
covered (Ref. 13 and independently by this author). AS 
will be shown below, a 25 TW/cm' COZ laser beam can in 
principle accelerate a 25 kA/cm* electron beam from 50 MeV 
to 1 GeV in 20 m with 65% energy conversion (or to 1.2 GeV 
in 30 m with 80% conversion). 

& (nA*) = E*AB~ , (1) 

&A = (n*-l)A f E*B* , (2) 

where E(<)=o~/w is the ratio of the plasma frequency to 
the wave frequency, the former given in terms of the 
density N(c) by w *(5)=4-re2N(r)/m, and Plc, ~ZC, 133~ 
are the electron v locity components along the three unit 1 
vectors. 

The evolution of E*(C), i.e. of the density, is 
given by the continuity equation in steady state, 

(E%3) = 0 , (3) 

and the evolution of the velocity components B1, 02, B3 
is given by 

!& (.ffil) = (l-no,) F - $!a 3 
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(5) 
current, the quantity 11 is many orders of magnitude 
smaller than unity, while A0 may be as large as 0.1. 

g (UC,) = -nAk - $!p , 
L1 3 

where G,,=eB,/mc is the nonrelativistic electron gyrofre- 
quency in B0 and v(~)=(l-B:-a~-a:)-'/' is the electron 
energy in units of the rest energy mc'. Eqs. (1) - (6) 
form a complete set of equations that specifies A, n, E, 
a,, Bz and fi3 as functions of 5 in terms of the assigned 
injection conditions at <=O. It is convenient to supple- 
ment these equations with the equation for y, 

(71 

Due to the high nonlinearities involved, it does not 
appear feasible to integrate these equations analytically, 
and recourse to either approximate integrations or to 
numerical solutions appears necessary. In either case, 
it is useful to know that four first integrals exist. 
They are given by 

1: = 283 , 

+ &g , 

11, = !i[(yB,)* + (vi&-A)*] - $Y . 

(8) 

One can recognize II, I?, and I3 as proportional to the 
conserved fluxes of particles, energy and momentum, while 
I, is the spatial analog of the invariant in Ref. (7), 
where a time (rather than position) dependent field ampli- 
tude was considered. 

Conspiciously absent from the above list of integrals 
of the motion is the quantity R,=y(n-b,). This quantity 
would have been an invariant if either both A and n were 
constant or they happened to vary in the relation dA/dn 
=-YB3/!32. In addition, one is interested in the quantity 
R,=y(l-nfi3), since the value R*=c~, where u=:%/w, corre- 
sponds to exact synchronism. If in particular n=l, then 
Ri and RZ are equal to R,=y(l-B,), and the condition 
R,=a leads to the self-resonant acceleration. As will 
be shown below, it is a fortunate coincidence that for 
the parameter values of interest, all these three quanti- 
ties remain very close to the value 11. 

In practi,cal applications, one is expected to use the 
most powerful radiation source available, i.e the COZ 
laser with wavelength X=1.06 x 10-I cm. Then for a 
magnetostatic field as*strong as B"=lOO kG, the value of 
Ro/w is equal to cr=lO- . It can be seen that the smal,lest 
value of y consistent with R,=a is obtained for B1=fi2=0. 
Accordingly, to minimize the input electron energy, it is 
desirable to inject the electron beam parallel to the 
magnetostatic field. In addition, this choice minimizes 
the thermal beam spread and also simplifies the analysis. 
Hence, it will be assumed from here on that the initial 
values of the electrons are given by @10=B20=0, B33= 
(1-u')/(l+u*), and y,=(l+cr')/(2~(), where a subscript U0' 
$notes the values at r=O. (If ions were to be accelerat- 

, the value of c1 would have been several orders of 
magnitude smaller and would correspond to a prohibitively 
high value of yfa, hence the choice of electrons as the 
particles to be accelerated.) 

Of interest is also a feeling of the numerical values 
of two more parameters. These are I, and AD. It is 
trivial to relate them to the beam current density J and 
to the radiation energy flux S. One obtains 

II = 1.87 x 10-s (5;\2), 
(9) 

A; = 3.66 x 10-l' (SX'), 

where h=Pr/k is the radiation wavelength and Jh’ and Sh' 
are expressed in Amperes and Watts, respectively. Obvious- 
ly, for 2=1.06 x 10-3cnl and any realistic choice of beam 

First it will be shown that R3 remains very close to 
the value CL. From the definition of I\ one can obtain 
the exact expression 

R,-u = !ii$s . (10) 

The denominator is essentially equal to Zy, while from 
Eq. (5) one can obtain yB2=A-AO, if RZ-a=O. Then, using 
also the definitions of I, and Ip, it can be seen that 
R,-CY increases very slowly, reaching the extremely small 
value 11/2<iol, when A=O. Accordingly, R, may be taken 
to be constant to very high accuracy. 

To show that R, and R2 are also essentially constant, 
it is observed that combinations of I2 and I3 give the 
relations _ -7 

1 
RI-e = 211 

R2-a = k, [(n"-l)A'i($$~'] , 

R,-n = -& [(n-l)2A2+($$*] , 

(11) 

Since all electrons are assumed to start with $lo=Bzo=C, 
the terms nroportional to (n-l) are not expected to be 
significant. Such terms originate from the component of 
the electron current across the electric field of the 
wave. This component is small, since under the assumed 
synchronism only the component driven by the electric 
field is expected to be significant. Accordingly, the 
dominant term is the one with the derivative dA/dz;. 
Hence, all three quantities in Eqs. (11) are bounded 
by 11/2<<tr. 

The above discussion justifies setting n=l and 
R,=R,=R3=(r in the equations of motion. Then, with yB2 
=A-A", one can obtain expressions relating yC1, yB3 and 
A to y, so that Eq. (7) can be integrated. A rather 
compact expression of the result is 

ITZ --= 
2 'max 

(1t2 y0-u -----) arcsin - &iY3 , (121 
yma x -Y 0 

where ymax=yo+Aa/I, is the maximum energy (in units of 
the rest energy) attainable by the beam and -I=(-(--i,)/ 
(ymax-yo) is the efficiency with which electromagnetic 
energy is converted to kinetic energy. The value h=l 

complete ener y corresponds to TFmtmax3 ,; .;.Az (2a)-% I ,-3 7 
conversion. 

This occurs at z=z~,~~='~ 
2. 

Fig. (1) shows the dependence of h on z/zmax for the 
most interesting case v~~~>>Y". At n<<l 
produces the standard proportionality y=z 

$is c;;;e,;;ier 

values of 7, the energy gain per unit length decreases 
somewhat, total energy conversion is nevertheless possi- 
ble for a finite length of interaction. High conversion 
efficiency is possible for a substantially shorter 
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Fig. 1 - Cornersion efficiency vs. normalized distance 
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length. For example, at the length z/zmax=$ the effi- 
ciency is n=O.83, while the length z/zmax=:i3 corresponds 
to r=0.93. 

For practical applications one can conveniently use 
Fig. (l), since in general it is expected that ~m~x>>y,~. 
Given N=~"/u, the maximum interaction length with a CO, 
beam is given by 

‘m,,cd = 800 ~~m21 , dz 
(13) 

in terms of the radiation beam energy flux and the elec- 
tron beam current density. Of course, the highest elec- 
tron energy attainable under corn lete conversion (n=l) 
is given by Emax [GeV] = S[GW/cm' /J[A/cm*], i3 plus the 

small amount of initial energy. 

Discussion 

To illustrate the potential of this acceleration 
mechanism, it is convenient to consider the CO2 radia- 
tion energy flux S and the electron beam current density 
J as functions of the initial and final electron ener- 
gies, E. and EiEma 
magnetostatic fiel 3' 

the interaction length z<zmax, the 
amplitude B0 and the corresponding 

conversion efficiency n. These functions are shown in 
Fig. (2) for the particular choices E,,=25 MeV, E=l GeV, 
z- 10 m and BO=lOO kG. Conversion to different choices 
is straightforward in view of the scaling relations 

S = E3B0z-' , 

J = E'Boz-* , (14) 

which are exact in the limit E/n>>E,,>>O.5 MeV. The con- 
straint Eo=BO-l supplements the scaling laws. 

As can be seen in the Figure, a 130 kA/cm' electron 
beam in a 10 m long 100 kG strong magnetic field can be 
accelerated from 25 MeV to 1 GeV by a 200 TW/cm' radia- 
tion beam at 65% conversion efficiencv. If the interac- 
tion length is assumed equal to one Rayleigh length, 
then the radiation cross-section is 1 cm*, giving a radi- 
ation Dower of 200 TW. about 10 times more than what is 
readily available at the present time. This limitation 
can be overcome at the expense of the interaction length 
and the initial beam energy. Thus, using the scaling 
laws, it can be seen that increasinq the interaction 
length to 20 m and the initial beam-energy to 50 MeV, 
while reducing the magnetostatic field to 50 kG gives an 
acceleration to 1 GeV of a 25 kA/cm' electron beam by a 

r, 
i 

i - ; GEV 

E, - ?5 i1EV : 

m  ̂

..L 
a, - 100 rG i 

25 TW!cm' CO2 radiation pulse. The conversion efficiency 
is again 65%. 

The acceleration process is not exoected to have 
any serious limitations associated with temperature in 
the beam. The quantitv of interest is R1=v(l-B,) and 
it is required that GR;<<R3=a. It can be seep that this 
requirement is satisfied by simply 6y<<(y2-1)~~y, while 
deviations from the assumed axial injection can be toler- 
ated, provided (yBL)'t+ initially. Similarly, the ex- 
ternal magnetic field must be uniform enough so that 
Ga<<cl=Ro/w, which gives 6B0<<B0. Also, inhomogeneities 
in the radiation pulse amplitude are no problem either, 
Those associated with the modulation of the input pulse 
are insignificant due to the minute relative lag of the 
electrons relative to the pulse (a few picoseconds). On 
the other hand, the dispersion of the beam is not par- 
ticularly important, since the synchronism does not de- 
pend on the radiation pulse amplitude. Actually, the 
dispersion can be taken advantage of, in order to com- 
pensate for the increasing Larmor radius of the parti- 
cles, as they acquire transverse momentum in the accel- 
eration process. Finally, the extraction of the accel- 
erated beam can be accomplished simply by adiabatically 
reducing the magnetostatic field to zero, thus converting 
to exclusively axial motion of the beam. In view of the 
above and the highly impressive expected performance of 
this acceleration process, it appears to be a viable 
candidate for a laser driven linear electron accelerator. 
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