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summary 

A static periodic magnetic field (wiggler) to- 
gether with a radiation field, can induce a beat wave 
in the _cresence of an injected electron beam. This 
beat wave, if properly phased, can trap and continu- 
ously energize the electron beam. TO optimize the 
transfer of energy from the photons to electrons, both 
the wiggler amplitude and wavelength are spatially it?- 
creased as a function of acceleration distance. The 
acceleration process is self-consistently analyzed and 
includes radiation depletion and space charge effects. 
Two numerical illustrations are given using different 
radiation sources. 

Introduction 

A number of authors have proposed methods for 
accelerating electrons utilizing the electromagnetic 
energy of a radiatior field in the presence of a 

periodic static rragnetic field. 1-3 Electric fields of 
typical lasers, in a pulsed, focused mode, can be 

> 10 9 eV/cm. These vacuum fields are luminous, rapi- 
dly oscillating both in sgace and time and, hence, 
impart an insiqnificant amoLnt of energy to the parti- 
cles. It is possible, however, to utilize a small 
fraction of the radiation field in the presence of a 
periodic magnetic field (wiggler) to contixously 
energize a beam of electrons. 

The combined action of the radiation field and 
wiggler magnetic field on the electron beam results in 
a beat wave or pcnderomotive wave. The magnetic wig- 
qler field periodically changes the momentum of the 
electrons in such a way as to give the electrons a 
velocity c0mponer.t in t:he direction of the radiation 
electric field. The electrons, if properly phased 
with respect to the beat wave, can be trapped and 
continuously er.ergized. As the electrons are accel- 
erated the necessary resorance condition can be main- 
tained tiy qradually increasing the wavelength of the 
wiggler field as a function of distance z along the 
acceleration region. Furthermore, to optimize the 
transfer of energy from the photsns to electrons it 
will be shown that the vector potential associated 
with the wiggler field should also be increased as a 
function of 2. Optimizing the transfer of energy from 
the radiation field to the trapped electrons requires 
increasing both the transverse as well as the axial 
energy of the electrons in A controlled way. After 
the tra:zped electrons have been energized, the trans- 
verse coherent motion can be converted into axial 
motion by adiabatically removing the wiggler field. 

Since the energized electron beam may be suffi- 
ciently intense to deplete the radiation field as well 
as to indace self space charge fields, the accelera- 
tion process is analyzed self-consistently. Bot‘n the 
amplitude and phase of the radiation field are self- 
consistently cbtained as functions of 2. The effects 
cf induced space charge field due to particle trapping 
is also handled self-consistently. Finally two de- 
tailed ncmerical examples of a radiation beat wave 
accelerator are given. 
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Self-Consistent 1-D Formulation 

In our analysis, we assume a cold electron beam, 
and linearly polarize? radiation field and wiggler 
field. We will present a self-consistent 1-D r.on- 

linear formulation including space charge effects. 415 

The physical principle of the laser accelerator is 
ider.ticalto the inverse mechanism of the free electron 
laser (FEL). The vector potential associated with the 
generalized linearly polarized wiggler and temporal 
steady state radiation field are 

LA(z) = Aw(z) cos ( ~ZkW(~-:&X , (1) 
0 n 

h,(z) = AR(z) sin( (ii/c)z-wt +cp(z))ex (2) 

where A 
R' A,, cp, and kw = 2n/Lw are assumee to be slow- 

ly varying functions of z, Ah, is the wiggler wavelength, 

and w is the constant frequency of the radiation field. 
In all cases of interest 'Awl 2> \ARl by many orders of 

magnit;lde. Furthermore it is necessary to have k r w b 
<< 1, where r 

b 
is the radius of the electron beam, in 

order to neglect spatial gradients in the wiggler. 

The ponderomotive wave is the result of the beat- 
ing of the wiggler field and the electromagnetic radia- 

tion field and arises from the c -1 (,v ~4) -g, term in 

the axial particle momentum equation. Since the gener- 
alized momentum in the x direction is constant, the x 

component 

+ iRiz,t)) 

of the particle momentum is P = ]el,/c(~~(z) 
A 

.e and c-l(~x.) .~,=i/e~/m c2:~2,)1(dA2/dz - x 0 w ^ 
,ez) , where 4 = -/e/,/(2ymoc 

2 
pond ;xxd ))A A WR 

Sin $ is the ponderomotive potential, 4 (z.4,) 

= 6” (k,*,(z.') + &u/C - w,'vz(e',$o!)dz' i-T:(Z) ; co is the 

phase between the electrons and the ponderomotive wave, 

$0 
is the initial phase at the entrance to the inter- 

action region, y is the total relativistic gamma factor, 
and v z =w/(w/c + k - 

W 
al)/az + dq /dz) is the axial 

electron velocity. In order for the electrons to cou- 
ple to the ponderomotive wave, we require v 2 v z ph = 
;u/(w/c + k ). Thus the resonance condition is UI - 

qf vz kwrWwherE y = y,y,, y, = i (1 + (Ie/Aw,/:moc2))*/2)~~ 

and Y, = (1 -(vz/c)2!-1'2 is the axial gamma factor. 

Self-consistent non-linear steady state equations 
for the laser accelerator are given below. De- 
tails of the analysis can be fotind in Refs. 4-5. The 
equation governing the relative phase between the elec- 
trons and the ponderomotive wave is given by a gener- 

alized pendulum-like equation, 5 

(3) 

2WbL/C2 
+ 

Y Yf 
(Ccos f+ sin$ - (sin+) 00s $) , 

0 {I3 
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wherew = 
b 

(4 n:e!2~o/moi" is the plasma frequency, n 0 
is the electron beam density, and (( )> 

$0 
= (2Tr)-l 

r2 ri 
J ( )dql is the ensemble average over initial 

0 0 
phases. The first three terms of Eq. (3) includes the 
effect on the phase due to the variation of the radia- 
tion phase, wiggler wavenumber and wiggler amplitude, 
respectively. The fourth term represents the ponder- 
emotive wave, and the last term denotes the effect of 
space charge (collective) waves on the phase. The 
amplitude and the phase of the radiation is governed 
by 2 

(: - k) AR = % & Aw ( yi, 
c 0 -. L 

+) =$ ?+ A, ( =f+ 

c 0 

(4) 

(5) 

where k = diq/dz + w/c. 

The rate of change of energy of the electron is 
-> 
& (Y (iAo)rnoC2) = - 2yyTq ) 2-c 

0 
mOC (6) 

A (z)A w R (2) CDS $ !Z,$ ) Cl 

In the ponderorrotive wave, the particle with constant 
phase is denoted as the resonant particle. nor the 

resonant particle, y, = y,y,,, where Y,, = (k/(kw 
L 

+ d;F /dz),'2)", The energy of the electrons associated 
with the perpendicular and axial motion can be in- 
creased independently. 

To maintain a resonant particle, either kw(z) or 

Aw(z) can be prescribed, but not both. The relation is 

2 

++ 2kwAwARcos$R (7) 

Assuming that the electron energy, at the entrance to 
the interacticn region z = 0, is matched to the phase 
velocity of the ponderomotive wave, the fraction of par- 
ticles that will be trapped depends on the amplitude 
of the trapping potential, lel$ trap' as well as the 

axial electron velocity spread, iiv 
z: 

The trapping 

condition is Ay,p < lel$trap/(Ymo~L) = 2 I[2 (y,&/) 

(lel/,hc*) (Awn,)? where Ay, = y y$A vs/c is the spread 

in axial y. The various contributions to ay, are wig- 
gler gradients, emittance, self-field and intrinsic 

enerq fluctuations at the cathode. 

Example 1 

As an example of a 10.6pm laser accelerator we 
choose a CO2 laser with an energy of 5 kJ, pulse dura- 

tion of 1 ns and laser beam waist ro=0.5 cm. T'he ampli- 

tude of the radiaticn vector potential is AR(O) = 52 

statvolts (E_(O) = 10' eV/cmj. The Rayleigh length 
2 n z = r W/c is 7.8 m. The tapered linearly polarized n D - - 

wiggler initially has a magnetic field Bw(0) = 7 

wavelength of Rw(Oj = 2.8 cm, amplitude of the vector 

potential Aw(0) = 2.25 x lo3 statvolts and an inter- 

action length of 12 m. The parameters of the electron 

beam, injected into the accelerator region at z = 0, 
are beam current I = 1 kA, beam radius rb = 0.1 cm, 

beam energy y(O) = 43.2 (y,(O) ~,l.4~3yz(0) = 31.E), 
particle density no = 3.32 x 10 cm and plasma 

11 -1 frequency W 
b 

= 1.05 x 10 set . 

Chasing the resonant phase #R = -2.5 such that 

cos jrR = -0.8, and tapering the wiggler field as shown 

in Fig. 1, the energy of the accelerated electrons in- 
crease as shown in Fig. 2. The rate of increase of 
energy averages to about .7 MeV/cm. The final param- 
eters are B w = 50 kG, P = 8 cm, y, = 63, y, = 26.1, r.7 
y = 1640. In this example, the radiation has been 
depleted by about half (Fig. l), and about 30% of the 
electrons in the injected beam have been accelerated. 

Example II 

In this example, we will utilize the radiation 
from a FEL to accelerate the electrons. A schematic 
diagram is shown in Fig. (3). The optical cavity 
system is composed of four mirrors, which if properly 
shaped could contain the radiation field. One cavity 
is used for producing the radiation using the FEL 
mechanism. Another cavity is used to accelerate the 
electrons using the beat wave mechanism. The tempo- 
ral sequence of the acceleration process is to build 
the radiation up to the desirable value first, and 
then to inject a second electron beam with the appro- 
priate energy into the acceleration region. 

The radiation power in the cavity should be 
about a factor of two or more of the final desirable 
accelerated electron beam power. We will consider a 
radiation beam with wavelength 1 = 0.025 cm, beam 
waist r = 0.5 cm, beam power PR = 1011 watts, 

0 

Rayleigh length z = 31.4 cm, and peak electric field 
0 

E 22 4.4 x lo4 statvolts/cm (13.2 MeV/cm). Since the 
R 

damage threshold of the electric field on the copper 
mirror is 0.5 ~eV/cn for lpsec at X = 0.025 cm, the 
mirrors must be separated by L = 50 so or 15 m. The 

Q of the cavity will then be approximately lo*. 

For the numerical calculation of the electron 
acceleration, we will make the resonant particle, 
constant phase approximation. In this approximation 
all particles as assumed to have the same constant 
phase, v,. The electron beam in this aFp?ZOXimtiOr~ 

consists of a pulse train of macro particles separ.ited 
in distance by 2nvs/W Furthermore, we will c‘hose the 

radiation field to be the fundamental TEMoO free Space 
field. Radiation depletion will not be considered 
in this example. The energy of the accelerated macro 
particles are calculated by Eqs. (6) and (7). 

The tapered wiggler initially has a magnetic 
field B (0) = 3 kG, wavelength of Zw(O) = 2.5 Cm, 

w 
amplitude of the vector potential A (0) = 1.2 x 10 

3 
w 

statvolts, and an interaction length of 2 m. Parameters 

of the electron beam, injected into the acceleration 
region at z = 0, are beam energy Y(O) = 7.9, Y,(O) = 

1.1 and y,(O) = 7.1 

Chosing cos $= -0.8, iocating the minimum waist 
of the Gaussian radiation beam at z = 2s = 60 cm, and 

0 

tapering the wiggler field as shown in Fig. (4), the 
energy of the accelerated electrons increase as shown 
in Fig. (5). The fastest rate of the energy increase 
(Fig. 5) is 0.7 MeV/cm at the pint where the Gaussian 
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radiation field (Fig. 4) is the largest. The final 
Par-CEterS are Bw = 29 kG, i = 7.5 cm, Y 

W z = 11.9, 

YL = 13.9, and y = 164. 

For a circularly polarized wiggler, the rate of 
acceleration is changed by adding an axial guide field, 

BZ' to the expression. 

3 (YRmoc21 w/c& AwAR 
dz =- 2Y ,2c4 Oofi-kwvz) 

cos $ 

0 

where i2 o = lelBZ/- 'not is the cyclotron frequency. One 

notices that if c1 a y k v 
w z' the rate of acceleration 

0 

can be substantially increased. 
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as a function of axial djstance z. 
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ted electrons, E b, as a function of axial 
distance z. 
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Fig. 3. Schematic diagram of the acceleration pro- 
cess utilizing the radiation field obtained 
from an FEL. 
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Fig. 4. Plots of the fundamental Gaussian free space 
diffracted radiation beam, and normalized 

Bw’ WI .f, & and y, as a fcnction of axial 

distance z. 
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Fig. 5. Plots of tile eEfective accelerating electric 
field, E act ' 

and the energy 05 the accelera- 

ted electrcns, E b' as a function cf axial 
distance z. 
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