© 1981 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Nuclear Science, Vol. NS-28, No. 3, June 1981

MODELING A HEAVY ION DRIVER FOR AN ICF POWER PLANT

M. D. Nahemow

Westinghouse Electric Corporation Research and Development Center 1310 Beulah Road Pittsburgh, PA 15235

Summary

This paper presents the point reference design of a heavy ion driver which results from a parametric scaling model of a commercial ICF power plant. The power plant consists of the driver, the reactor, the pellet factory, and the balance of plant which generates and distributes the electric power to sell as well as the power to run the driver. The results presented in this paper deal with the driver and its interface to the reactor. These results are obtained with a heavy ion driver model which is part of a larger model developed by the Westinghouse Electric Corporation for the entire power stations.

The theoretical model which has been developed for the heavy ion driver attempts to set forth a self consistent set of equations that define an envelope within which real drivers must fall. Many technically critical parts of a driver have been intentionally left out where it was felt that they did not impact the basic conceptual design, system size, or cost. Detailed discussions of all of the subsystems can be found in the proceedings of the Heavy Ion Fusion Workshops 1-4 and the IEEE Biannual Accelerator Conferences. 5-7

The scaling of costs is based on the base costs for Fermilab and the AGS at BNL given in the Proceedings of the Heavy Ion Fusion Workshop² of October 17-21, 1977, pages 141-145. The power supply costs are based on a recent quote by Continental to ANL for a 5 MW unit delivered, but not installed, of \$.20/watt peak.

Introduction

The function of the driver is to deliver a properly shaped pulse of energetic heavy ions to the pellet. For a heavy ion driver this implies ions of atomic mass from Xe 131 to U 238 at kinetic energies from 5 GeV to 20 GeV.

These ions are to be focused on a target spot ranging from 1 mm to 5 mm in radius. The pulses are to be 6 n sec - 20 n sec long containing 1 MJ to 10 MJ of energy per pulse.

1

....

TABLE

PARAMETERS REQUIRED FOR HEAVY ION DRIVER

Ion:	Xe or Xe
Ion Energy:	10 GeV
Target:	2.5 mm Radius
Beam Energy:	2 MJ
Beam Power:	150 TW
Pulse Length:	13 nsec

Because the charge state has an extreme influence on size and cost, two almost identical systems meeting the design requirements are described in Tables 2 through 7. The systems are based on either Xe⁺ or Xe⁺⁺ (single and doubly ionized xenon). For these reference designs the ion energy is 10 GeV, the beam energy is 2 MJ, the beam power is 150 TW, the pulse length is 13 nsec, and the pellet radius 2 mm. When only one value of a parameter is listed it is the same for both systems. Figure 1 is a schematic representation of a heavy ion driver base on Xe⁺. In general, all parts of the Xe⁺⁺ system are half the size of the corresponding part of the Xe⁺ system. However, the number of storage rings required by the Xe⁺⁺ system is four times greater than that required by the Xe⁺ system. The low β , Wideroe, accelerator ends at "a" on the figure ; the high β , Alvarez, accelerator starts at "a" and continues to "b" on the figure.

Tables 2-8 will describe the seven blocks comprising the driver and reactor interface by listing important parameters and their values.

TABLE

2

PARAMETERS DESCRIBING THE ION SOURCE AND PREACCELERATOR

lon	<u>Xenon</u>
Normalized Emittance	s _s = 3.2 x 10 ⁻⁷ m-rad
Current per source	1 . = 25 mA
Charge state of ion	2 = 1
Atomic mass of ion	A = 131
Kinetic Energy of Preaccelerator	To = 2 x 10"3 GeV
Number of Sources	Xe ⁺⁺ ,n ₂ = 4 Xe ⁺ ,n ₂ = 8

Bending and Final Focusing Elements

The heavy ion driver is defined as ending with the beam transport line; the final bending and focusing elements are considered part of the reactor block because of the strong influence of the neutron flux on their design. The essential elements of the interface are: bending magnet (to bend the ion beam away from the neutron path), neutron dump (to capture the backstreaming neutrons) and final focusing triplet. These are shown in Figure 2. A greatly expanded vertical view of the action of the final focusing triplet is shown in Figure 3. The final focusing

TABLE

PARAMETERS DESCRIBING THE LOW & ACCELERATOR WIDEROE CAVITIES

3

TABLE 6

PARAMETERS DESCRIBING THE STORAGE RINGS

Total energy D 16 MJ				Xe ⁺⁺		Xe+
	Xe ⁺⁺	Xe ⁺	Storage time	4 mse	c	2 msec
Total Dower to hear	37 9 60	75 R ML	Number of rings	16		4
to cavit(es	58.3 MW	116.6 MW	Radius of rings	45 m		90 m
			Averane dipole field		1 B Testa	
First Section	•••		View of Pige	17.	10 ⁻⁹ Tora	2 7 × 10 ⁻⁹ Torr
Operating Frequency 2 MeV in/20 MeV out 1+1 Ream Loading	12.5 MHZ			1.3 A	50F	2.7 10 1077
Magnetic Field, B	>] Tesla				303	
Number of Sections	4	8	Stacking in ring		(10 x 10) -5	
Length of each Section	18 m		e _{SR} Normalized Emittance		2.6 x 10 ⁻⁵ m-rad	
forond fection			Number of bunches per ring	١		5
Operating Frequency	5C MHz		Compression in ring		7 X	
20 MeV in/100 MeV out; 1:1 Beam Loading			Revolutions to compress	8		4
Magnetic Field, B	∿ 0.65 Tes1	a	Time per revolution	2.94	LSec	5.89 µsec
Number of Sections	2	4	Current at extraction	70 A		70 A
Length of Each Section	50 m		TABLE	7		
Third Section			PARAMETERS DESCRIPTING THE	FINAL TR	ANCONDT SYSTEM	
Operating Frequency	100 MHz					
100 MeV in/600 MeV out; 2:1 Beam Loadin;	9	0.0547			Xett	Xe ⁺
Magnetic Field, B Number of Sections	1.6/1	2	Number of lines		16	20
Length of each Section	350 m	700 m	Compression from storage ring to tar	get	26.B	10.7
TABLE 4			Paraxial distance from storage ring pellet	10	1334 m	500 m
PARAMETERS DESCRIBING THE HIGH & LINAG	ALVAREZ CAVITIES		Initial current per line		70 A	70 A
Tetal analy 1 PA M1			Final Current at pellet		1875 A	750 A
Total energy 1.64 nu	***	¥*	Current at end of transport		752 A	306 A
• • • • • • • • • • • • •		<u></u>	First quad pole tip field		0.025 Tesla	0.018 Tes1
lotal power to beam to ravities	460 RF 514 MW	1227 MW	last quad pole tip field		D.92 Tesla	D.17 Tesla
			Geometric mean B		0 025 T	0 D16 T
Operating Frequency	200 MHz		TAD			5,6,6 1
0.5 GeV in/10 GeV out; 3:1 Beam Loading			I A B		•	
Magnetic Field, B	~ 0.002 Tes	a	PARAMETERS DESCRIBING	PARAMETERS DESCRIBING THE FINAL FOCUS AND		ACTOR
Length of Linac	2760 m	5520 m	Reactor inner radius			10 m
					<u>Xe</u> ++	<u>xe</u> +
		Distance from pellet to front	of final			
PARAMETERS DESCRIBING THE DEBUNCHER, MULTI	++ .	* *	focusing magnét		13.9 m	15 m
Debuncher	Xe	Xe	B _{max} of final element		4.1 T	4.8 T
Operating Frequency	200 MHz		Total length of focusing tripl	et	6 m	6 m
Power	2 MW	4 MK	Distance from pellet to first	focusing		
Length of debuncher	50 m	100 m	magret		48 m	78 m
Multiplier Rings						
2 Rings			NEUTROP	HIGH :	Z PLUG	FIRST WALL-
10 revolutions to fill fuerane disple field	1 8 74-14		LOW Z SHIELD	1 ~	WATER PLUG	
Radius of Ring	45 m	90 m		⇒∠_		
			STORAGE RING		BEN	DING FINAL H SNET TRIPLET
Compressor			104	BEAM		
at introduced to produce compression	21 T = 0.1	c uev		-	40 m	
Length of compressor	55 m	110 m	KICKER			
		c .				

triplet causes the ion beam which is expanding after leaving the first focusing magnet to converge towards the focal spot some 15 meters away from the edge of the magnet. The 20 transport lines for the Xe⁺ system terminate in ten final focusing lens on each side of the reactor. Figure 4 shows a possible arrangement of the final focusing magnetics. These triplets weigh of the order of 90 tones each. The final focusing system is summarized in Table 8.

Figure 3

Detail of Heavy Ion Beam Focusing

figure 4

Reaction Chamber Interfaces Showing Relationship Between Focusing Magnets, Ion Beam Ducts and Vacuum Pumps

System Operations and Cost

The accelerator portion of the driver stores 2 MJ of energy in the storage rings in the form of energetic ions 10 times per second. Each storage ring has one kicker magnet to extract each bunch from the ring. The total time for the beam to compress is 28µsec for Xe+ and 35usec for Xe⁺⁺. The beams must be in phase with each other to less than 1 nsec, but the absolute timing is not critical since the pellet travels a negligible distance in one cycle period of a storage ring. The synchronization of the beams requires a phase accuracy within the ring of $1:10^4$ which is well within the state of the art. The final magnet systems focus the ions onto the pellet and bend the beam into the line of sight of the pellet allowing the neutrons to stream into the neutron dumps. Because the components of the heavy ion driver and interface systems are based on a mature technology, it is possible to assign estimated costs to the blocks described in the preceding parts of this section. These costs are listed in Table 9.

TABLE

ESTIMATED COSTS FOR MAJOR CONSTITUENTS OF A 2 MJ. 10 GeV HEAVY ION DRIVER-REACTOR INTERFACE SYSTEM

9

	xe [↔]	Xe+
Ion source and pre-accelerator	\$7 M	\$ 14 M
Low B, Wideroe, accelerator	105	210
High B, Alvárez, accelerator	484	968
Debuncher, multiplier rings, etc.	29	58
Storage rings	194	97
Final transport	586	176
Total Driver Cost	\$1405 M	\$1523 M

These figures show that the anticipated cost benefit from going to higher charge state ions is not very great. The cost of the first four blocks for Xe⁺⁺ is indeed half that for Xe⁺; however, the last two blocks for the Xe⁺⁺ are twice to four times as expensive as Xe⁺. In either event, the total cost shown in Table 9 is quite high and should be the object of cost reduction studies.

Acknowledgment

This work was performed for the Office of Fusion Energy of the U.S. Department of Energy under Contract DE-ACO8-79DP40086, Inertial Confinement Fusion Central Station Electric Power Generating Plant Design Study.

References

1-4 Proceedings of the Heavy Ion Fusion Workshop

- 1) Berkeley California, July 1976, LBL-5543
- 2) Upton New York, October 1977, BNL-50769
- 3) Argonne Illinois, September 1978, ANL-79-41
- 4) Berkeley California, October 1979, LBL-10301
- 5-7 1977 Particle Accelerator Conference, Chicago Illinois, March 1977
 - 5) R. Burke et. al., p. 996-998
 - 6) M. Reiser p. 1006-1008
 - 7) R. Burke et. al., p. 1012-1014