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Introduction 

It is the purpose of this paper to explain the 
various operating modes of the "free electron laser" 
in a manner that is easy for accelerator designers to 
understand.l The successful operation of the tlfree 
electron laser" by the group at Stanford, directed by 
John Madey,2'3 along with the availability of high 
power electron beams has stimulated a great deal of 
interest in the use of the "free electron laser" (FEL) 
to produce high power tunable laser beams. At the last 
National Accelerator Conference held in San Francisco, 
Pellegrini4 presented a paper on the FEL. Since his 
paper contains an excellent discussion of the work 
preceding and following Madey's experiments, we will 
not repeat it here. Often the analysis of the FEL, as 
well as the methods envisioned for the FEL operation, 
started with the assumptions that the period and ampli- 
tude oE the wiggler field were constant and the magnet- 
ic field uniform in the transverse direction. A great 
deal of the earlier work, using the techniques of the 
laser and plasma physics community, was presented at 
the 1977 Telluride Conference.' Here Colson developed 
the equations of motion for a single electron moving 
through a wiggler in the presence of an electromagnetic 
wave propagating along the wiggler axis. 

The similarity of these equations of motion to 
those used by accelerator physicists, desi ning 
frequency accelerating systems, allowed us t 

radio 
to use the 

ideas developed for the acceleration of charged parti- 
cles to guide the design of the FEL. The FEL is viewed 
as a decelerator in which the usual longitudinal accel- 
erating field of a microwave cavity is replaced by the 
transverse decelerating field of a laser. The FEL uses 
a periodic transverse magnetic field (wiggler field) to 
provide the coupling between the longitudinally directed 
electrons and the transverse laser field. At the 1979 
Telluride Conference7 many of the papers used terms 
like: coupling between the betatron and synchrotron 
oscillations, stationary and decelerating buckets, 
phase displacement, adiabatic capture, and detrapping. 
Accelerator physics has both influenced FEL design and 
introduced a new jargon into the field. 

Since the equations of motion have been derived 
beEore, the main emphasis of this paper is to demon- 
strate the similarity of these equations to those 
studied by the accelerator physicist for many years. 
In the following survey of the field, we will use accel- 
erator methods to discuss the present FEL designs. 
Because this survey is mainly tutorial the derivation 
of the equations is presented in a physically intuitive 
fashion rather than in a strictly rigorous manner. 

Equations of Motion 

When an electron travels through a periodic trans- 
verse magnetic field, the electron is given a transverse 
velocity which allows it to either receive or give en- 
ergy to the transverse electric field of a plane elec- 
tromagnetic wave. If the longitudinal velocity of the 
clectron is such that the electron slips behind the 
radiation wave by one radiation wave length while 
traveling a distance of one magnetic field period, the 
transverse velocity of the electron remains in reso- 
nance with the electric field of the radiation. Such 
electrons will continue to have their energy increased 
or decreased, depending on the phase of their trans- 
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verse velocity relative to the radiation field. We 
define this phase by 

JI = { a ~w(zl) + ksh)lc~I - wst 1 (1.1) 

where z is the longitudinal position of the electron at 
time t; kw and k, are the wave numbers of the wiggler 
magnetic field and the signal (or optical field), which 
we allow to be functions of z, and ws is the frequency 
of the signal field. The equation of motion for J, is 
given by 

j. = (kw + ks)k - ws (1.2) 

If we substitute ws = k,c we see that 4 = 0 corresponds 
to the resonant condition described above. The isngi- 
tudinal velocity i depends upon the electron energy by 
the relativistic approximation (c-v) = c/2y2 and upon 
the transverse velocity by the relation v'= v.$+v$+vi. 
The transverse velocity in the wiggler is sinusoidal 
with wave number kw and rms amplitude equal to ca,/y, 
where we have introduced the dimensionless vector 
potential for the wiggler field 

c 1 
BW a z-s.- w mc 2% 

with B, the rms magnetic field of the wiggler, andy the 
energy parameter of the electron. We use the assump- 
tions that vx/v cc 1 and vy/v << 1 to obtain 

JI' = kw - 3 (1 + a,2,) (1.4) 

where we have changed the independent variable from t 
to z by noting that dz = v,dt % cdt, and the prime 
denotes the z derivative. The rate of change in the 
energy of the electron is proportional to the product 
of its transverse velocity (produced by the wiggler 
field) and the transverse electric field of the 
radiation and is given by 

kSaS”S 
Y 

‘= - - 

Y 
sin$ (1.5) 

where we introduced the dimensionless vector potential 
for the signal field 

a = 
S 

(1.6) 

with Es the rms electric field strength of the signal 
field. For completeness we need the equation that 
describes the signal field a,; this we obtain by 
observing that the energy lost by the electrons in- 
creases the energy in the optical field. This gives 
the following expression 

32,(z) = a:(O) - 

where J is the current density of the beam, Zo is the 
impedance of free space, and the bar over Y indicates 
the average over all of the electrons. There is, of 
course, another equation for the phase of the signal 
field, or equivalently the wave number k,, which we 
will discuss later. It should be noted that certain 
assumptions, discussed by Kroll et a1.,6 have been 
made in deriving the previous equations. Given the 
initial conditions ~(0) and y(O) of every electron 
along with the expressions for k,(z), a,(z) and a,(z) 
the equations of motion [Eqs. (1.4) and (1.5)1 may be 
integrated to yield the values of J, and y as functions 
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of the longitudinal position a. In principle this pro- 
cedure could be used to choose the optimum functional 
form for k,(z) and a,(z). 

The equations of motion given above are similar 
to those used to describe the rf acceleration of charged 
particles; therefore, it is possible to understand much 
about the motion of the electrons without the need to 
integrate these equations for every electron. 

Motion About the Synchronous Energy 

In an analysis similar to that used in rf acceler- 
ator theory, we define the synchronous or resonant par- 
ticle by its energy, Y,, and its phase $I,, by 

v:(z) = $ (1 + ai) 
and 

ksasa” y;(z) = - - 
yr 

sinJ; 

(2.1) 

(2.2) 

From Eq. (2.1) it follows that J1: = 0 for an electron 
at the resonant energy. It is possible to look at Eqs. 
(2.1) and (2.2) as definitions of yr and $r assuming 
that kw, a, and as are known functions of a. However, 
it is also possible to consider these equations as 
design equations to yield the desired functions $r, yr 
and as. An analogous approach is used in proton linacs 
to determine the drift tube lengths once the energy gain 
and stable phase angle are chosen. Note that one is 
restricted in the choice for y; and a, since $r is 
undefined if 

Iksasaw/ < Iyry;I (2.3) 

This is also analogous to the case of a protron linac 
where the voltage would be too low to achieve the 
desired energy gain. 

In the latter part of this paper we will discuss 
how the different operating modes of the FEL relate to 
the choice for the functions aw, kw, as, ks, Jtr and yr. 
First, we must study the motion of the electron with 
phase and energy different from the resonant value. 
Again we follow rf accelerator theory, and define the 
difference between the electron energy and the resonant 
energy by 

6-f = Y - Y, (2.4) 

and use the assumption that 16~1 << yr to obtain the 
following equations of motion 

ksasa” A.(’ = -- 
Yr ( sin$ - sin+ 

1-1 (2.5) 

and 

$' = ks 

i 

(2.6) 

Equations (2.5) and (2.6) are extremely familiar to us 
as accelerator physicists, and for the case where the 
parameter changes in the above equations are adiabatic 
we can immediately draw the trajectories of an electron 
in the phase plane. 

These trajectories are shown in Fig. 2.1 for the 
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Fig. 2.1, Phase curves by versus $I. 

case where sin+, < 0. 
Jlr = 0. 

For constant parameter wigglers 
The sign of $r has been chosen opposite to 

that used by accelerator designers; when 0 < JI, < n/2. 
the resonant electron is decelerated. The closed tra- 
jectories correspond to electrons trapped in buckets 
and which perform synchrotron oscillations about the 
resonant phase and energy. 

The maximum stable phase curve or bucket for 
--TI < $ < II is shown in Fig. 2.2. It follows from Eqs. 

J 

-li +, 
T 
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Fig. 2.2. Phase Curves 6y versus $. 

(2.5) and (2.6) that the maximum value of 6y for which 
a particle may be trapped in a bucket is 

%I = 2y r 
J 

3 r(JIr) 
" 

(2.7) 

with 

r($r) = ,/ cosmic -(I sinJlr - 14~) sin$r (2.8) 

We note that T varies between its maximum value of one 
(at $r = 0) to a value of zero (at $, = s/2). The area 
of the bucket shown in 

aa 
A=16y, --z-K 

1+a2 a(JIr> 
\i w 

(2.9 ) 

where a($r) is the usual moving bucket parameter which 
varies between a value of one (at $r = 0) to a value o 
zero (at $r = n/2). We see that we have the usual 

f 

condition-similar to that for rf accelerator systems- 
that both the height and area of the bucket decrease as 
the deceleration (or acceleration) rate increases until 
at a resonant phase of a/2 the bucket disappears. 

The small amplitude or linear oscillation frequen- 
cy also follows from Eqs. (2.5) and (2.6) and is 

Ql = 2kw/T = kwj% (3) (2.10) 

Constant Parameter Wipgler 

The "standard operational mode" of the FEL, which 
was the mode used in the Madey experiment, is one in 
which the wiggler wave number kw and field amplitude aw 
are constant. The resonant phase Jlr = 0 and the 
resonant energy yr is constant given by 

(3.1) 

In this mode the buckets are nonaccelerating or station- 
ary. At first glance it is a little difficult to under- 
stand how such a device can work since electrons injec- 
ted near the resonant energy with a uniform phase dis- 
tribution will have their energy oscillate about the 



resonant energy (which remains constant). The key to 
successful operation of the FEL in this mode is to in- 
ject the electrons above the resonant energy and to al- 
low them to complete only a fraction of an oscillation, 
as shown in Fig. 3.1. 

Therefore, Fig. 3.2 may also be regarded as a plot of 
the signal intensity increase as a function of the 
signal frequency. In laser physics we refer to such a 
curve as the gain curve. The width of this gain curve 
is of the order of the bucket height (&y,/y), so that 
for a beam of electrons with an initial energy spread 
much larger than the bucket height, only a small frac- 
tion will transfer energy to the optical wave. We see 
from Fig. 3.1 that the maximum energy loss by the 
electrons is given by 

eL 

! ) Y max loss 
- (2) = 2J+ (3.3) 

W 

while electrons emerge from the wiggler with an energy 
spread 

spread 
(3.4) 

The optimum wiggler length for maximum energy transfer 
from the electrons to the signal wave follows from 
Eq. (2.10) 

(3.5) 

with A, the wiggler period = Zv/k,. When this equa- 
tion is combined with Eq. (3.3) we find that the maxi- 
mum energy that can be extracted from the electrons in 
this mode of operation is given by the simple 
relationship 

*b/1 v >..8‘> 
Fig. 3.1. Evolution of the electron energy distribution. 
(a) Initial distribution; (b) after one-half oscillation; 
(c) after nearly one oscillation. 

The electrons with either large or small energy 
deviations (compared to 6ym) will have only a small 
average energy change, while electrons with an initial 
energy deviation 6yi - 6ym and which perform approxi- 
mately one-half of an oscillation will have their average 
energy reduced the most. For maximum gain it is impor- 
tant to choose both the initial energy and the wiggler 
length correctly. Fig. 3.2 shows how for a fixed wiggler 
length, the energy extracted from the beam depends upon 
the initial energy. 
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Fig. 3.2. Gain curve. Energy loss of electrons versus 
initial electron energy or signal frequency. 

It is clear that either we can regard the electron 
energy as the quantity which differs from its resonant 
value or we can regard the signal frequency (w,=k,c) as 
the quantity which differs from its resonant value. The 
relation relating these two viewpoints is 

6!lJ 
-2=*&l 

US c > Y 
(3.2) 

CL 
! ) 

1 
Y max loss "ZT (3.6) 

where N is the number of wiggler magnet periods. The 
fact that, for a constant parameter wiggler, the aver- 
age energy spread produced by the FEL is always equal 
or greater than the average energy loss follows from a 
more general theorem proved by Madey.O This places a 
severe restriction on the efficiency of this type of 
FEL. Renieriq has shown that if such an FEL is opera- 
ted in a storage ring, with the synchrotron radiation 
used to damp the energy spread due to the FEL, the max- 
imum obtainable laser power is related to the power 
radiated into synchrotron radiation by 

P laser s 2P (3.7) 

There are FEL-storage ring projects, which use the ra- 
diation damping to limit the energy spread of the elec- 
trons, at Orsay, Frascati, Brookhaven and Novosibirsk. 

It should be noted that the equations of motion 
derived above are Hamiltonian, guaranteeing that the 
phase area is conserved. The net increase in the ener- 
gy spread is due to a combination of phase area fila- 
mentation and a smearing of the optical phase angle as 
the electrons travel around the storage ring from the 
end of the FEL back to the entrance. 

DeaconlO has analyzed the operation of a constant 
parameter FEL in an isochronous storage ring. As an 
electron travels around the ring, such a device main- 
tains the phase relationship between the electron and 
the optical wave. The electron is trapped in the op- 
tical bucket and can transfer energy from the low 
frequency rf cavity to the high frequency optical cav- 
ity. He discusses the design of a storage ring capable 
of restricting the spread in the longitudinal position 
of the electrons to be less than a fraction of the op- 
tical wave length. This requires a very low momentum 
compaction factor, and the longitudinal focusing is 
very weak in the absence of the optical wave. At the 
present time, this idea has not been explored experi- 
mentally. 
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Other Wiggler Schemes 

While it is gratifying to note that the results of 
the constant parameter wiggler may be obtained by the 
graphic use of optical buckets, the real use of this 
technique is in the FEL design of a variable parameter 
wiggler. By using this technique it is easy to devise 
schemes where a significant fraction of the electrons 
are captured in a decelerating bucket as shown in 
Fig. 4.1. 
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Fig. 4.1. Electron phase space distribution: (a) at 
the wiggler entrance, (b) at the wiggler center, and 
(c) at the wiggler exit. 

Electrons which are trapped in the bucket will 
have their average energy reduced by an amount equal to 
the decrease in the resonant energy given by 
AYr = CY,(O> - YrWI. In order to simplify the design 
of such an operational mode it is useful to consider 
the case where $r is chosen constant between 0 and 71/Z. 
It follows from Eqs. (2.1) and (2.2) that the change 
in the resonant energy is related to the change in the 
wiggler parameters by 

with the constraint that the wiggler length is 

L= 
sinlClr - 

(4.1) 

(4.2) 

where aw is the value of aw averaged over a. From these 
equations we see that, for a long enough wiggler, it is 
possible to produce a desired change in the resonant 
energy by an appropriate change in the wiggler parame- 
ters, a, and kw, as a function of a. The choice for 
the value of the resonant phase is determined by a com- 
promise between the desire to minimize the wiggler 
length (large $r) and the desire to capture a large 
fraction of the electrons (small Jlr). The optimum 
is near n/4. From Fig. 4.1 we see that in order to trap 
a significant fraction of the electrons it is important 
that the electrons enter with an energy spread less than 
the bucket height [Eq. (2.7)1. In addition, the trans- 
verse emittance E produces an equivalent energy spread 
due to the fact that a spread in the transverse dimen- 
sion produces a spread in a, while a spread in the 
transverse velocity produces a spread in the longitudin- 
al velocity. 
is given byi 

This additional equivalent energy spread 

iY 
i ) 

kwaw = 6 
2 l+ai 

:y_E 
equiv 

( J 
' 

(4.3) 

As we see from Eq. (2.7) the bucket height is propor- 
tional to the square root of the laser field, i.e., the 
fourth root of the laser intensity! The energy spread 
and the emittance from most linacs require a rather 
large laser intensity to produce the necessary bucket 
area. Diffraction effects relate the radius of the 
optical beam and thus the optical intensity to the FEL 
length, while both the FEL length and the optical field 
are related to the energy extracted from the electrons 
by Eq. (4.2). All of these relationships must be com- 
bined to obtain a consistent set of parameters and then 
some type of optimization performed. 7 This type of 
procedure nearly always requires a good quality elec- 
tron beam with a high peak current to obtain the de- 
sired optical gain and energy extraction from the 
electrons in a single pass FEL. 

At the present time in this country there are 
three single pass experiments under way to study this 
mode of FEL operation as illustrated in Fig. 4.2. 

Fig. 4.2. Proof of principle experiment. 

These experiments are located at TRW, LASL and 
Math. Sci. N.W. All experiments use a 10.6 urn laser 
beam (CO, laser) and a SmCo permanent magnetic wiggler 
(similar to that used in the SPEAR storage ring). The 
electron beam energies vary from 20 to 25 MeV. MSNW 
is using the Boeing linac and TRW is using the EGG 
linac, while LASL is updating one of their linacs for 
these experiments. These experiments should be com- 
pleted soon, and we ea erly await the results. 

Another scheme, 13 designated as a gain expanded 
FEL, has been proposed by the Stanford group to reduce 
the sensitivity of the optical gain to the electron en- 
ew . This method utilizes a transverse gradient in 
the wiggler magnetic field which produces a dispersion 
(i.e., different energy electrons have different equi- 
librium orbits) in the FEL. The wiggler field is cho- 
sen so that, regardless of its energy, an electron en- 
tering on its equilibrium orbit will travel through the 
wiggler with an average longitudinal velocity which is 
independent of its energy. The resonant condition is 
given by [Eq. (2.1)1 

k 
w = 3 (,+a:) 

we see that the dispersion n = y(dx/dy), and the trans- 
verse variation of the magnetic field must satisfy the 
relation 

(4.5) 

There are two operating regimes for this device. The 
first occurs when the synchrotron frequency is small 
compared to the betatron frequency. In this regime 
the coupling between the synchrotron and the betatron 
motion results in a decrease of the electron energy 
accompanied by an increase in the transverse betatron 
amplitude. There is hope, by using a separated function 
wiggler, that cancellation of the driven transverse os- 
cillations may be achieved. In the second or high field 
regime the gain expanded FEL behaves similarly to the 
variable parameter FEL. The electrons are trapped in 
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optical buckets and as their energy decreases they 
move transversely to a lower magnetic field. This 
regime has many of the same advantages and problems 
as the variable parameter FEL discussed above. 

A phase area displacement scheme would be useful 
to decelerate electrons with only a modest increase in 
the electron energy spread. This method allows all of 
the electrons to be decelerated even when the initial 
energy spread (including the effective energy spread 
from the transverse emittance) is much larger than the 
bucket height. This scheme is shown in Fig. 4.3. 

---a Y,lC) 
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Fig. 4.3. Position of empty bucket and phase area 
of electrons at various positions in the FEL. 

Phase area displacement could be used in a single 
pass device where the energy is too large to use the 
capture-deceleration scheme or in a storage ring where 
is is desirable to be able to decelerate all of the 
electrons with a large energy spread while minimizing 
the increase in the energy spread. This method 
requires a rather long wiggler to insure that the change 
in the resonant energy is adiabatic. 

There are many other types of schemes that have 

mentioned above. The use of the optical bucket concept 
has been instrumental in both the conception and the 
interpretation of many of these new schemes. 
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