AN ELECTRUS ATIC BEAM SPLITTER FOR THE SIN 59C MEV PROTON BEAM LINE

M. Olivo, U. Rohrer, E. Steinor

Swiss Institute for Nuclear Research - 5234 Villigen, Switzerland

Summary

An electrostatic bear splitter was built at S.I.N. to provide simultaneously proturn beams to the experimental physics area as well as to the medical pior therapy irradiation facility. Splitted beams of 100 and $16 \mu \mathrm{~A}$ respectively are typically produced with an overall beam loss of $0.5 \pm 0.1 \%$. Constructional details and operating experience are presented.

Introduction

The construction of a new biomedical facility et S.I.N. ${ }^{1}$ with its own pion production target made it necessary to peel off a beam of ur t. $20 \mu \mathrm{~A}$ from the existing 590 MeV proton beam. The boundary conditionsforabeam splitter were the following:

- The present $50 \mathrm{MHz}, 0.4 \mathrm{~ns}$ (FWHM) time structure of the main beam had to be maintained.
- The beam for the biomedical facility should be turned $O N$ and $O F F$, and its intensity be variable between 0 and $20 \mu \mathrm{~A}$, without disturbing the main beam.

These conditions excluded all RF splitting devices and left systems with magnetic or electrostatic septa. An electrostatic septum was chosen because of the lower beam losses expected with its thinner septum. In additior. to the requirements listed above there was the serious restriction of free space to introduce the splitter in the existing beam line. This limitation in space woulu lequire, for a canventional single sided septum a prohibitively high voltage in order to producethe needed beam deflection. Ey applying a field on both sides of the septum the specifications could be met without using very high voltages. Since the main protonbeam should remain essentially undeflected, an additional stesering magnet was required to compensate the effects of the electric field on that portion of the beam.

Design description

The splitter channel consists of two fixed cathodes and a movable thin septum. A crosssection of the splitter is shown in Fig. 1 . For the given geometry and with the septum in the middle of the channel a voltage of approx. 180 kV (applied to poth cathodes) is needed to achieve the requirec angle of 6 mrad betweer the emerging 590 Mev splitted beams. The position of the beam at the entrance of the splitter is kept centered Eetween the two fixed cathodes. The position of the septum is varied until the desired beam intensity for the medical area is reached.

The movable septum consists of 47 Molybdenum strips (50 um thick, 3 mm wide) separately tensioned over a supporting structure. The structure is basically similar to the Electrostatic Extractor Channel of the S.I.N. 590 MeV ring cyclotron. ${ }^{2}$ The assembling of the Mo stripo was done with the "C" struture mounted on a high precision milling machine. With the help of a microscope of very small depth of field, the position and flatness of the strips were carefully controlled during their tensioning. An overall flatncss, including the irre gularities of the "C" structure, of $\pm 10 \mu \mathrm{~m}$ was achieved resulting in an effective septum thickness of $70 \mu m$. To reduce the beam load on the leading strips, a Mo wire $75 \mu \mathrm{~m}$ thick was mounted 37 mm infront. of the first strip.

Fig. 1 Cross-section of the splitter. The high voltage, mirror polished, Aluminium (Ai-MgSi1) electrodes (390 mm long, 75 mm high, 20 mm thick) are supported by Eed insulators. The grounded Molybdenum strips (3 mm Wide, $50 \mu \mathrm{~m}$ thick, spaced 5 mm apart), forming the septum, are mounted on a "C" shaped St. St. structure. To reduce the power load on the first strips a Mo wire $75 \mu \mathrm{~m}$ thick, acting as a scatterer, was mounted 37 rim upstream from the first strip. The wire and the strips are separately tensioned to about $20 \mathrm{~kg} / \mathrm{mm}^{2}$. Each cathode is connected to the H.V. feed-throughs via low inductance 160Ω wire resistors. The gap between the fixed cathodes is 50 mm . The \pm movement of the septum is restricted to $\pm 24 \mathrm{~mm}$.

Movement of the septum is provider via a high precision gear system couoled to a fast d.c. motc:. The septum can be positioned to better than 0.1 mm . It takes suU msec to cover the 50 mm gep or 25 sec if it is done in steps of 0.1 mm (50 msec per 0.1 mm step). A second motcr, fixed to the moving structure, was provided to adjust the septum orientation to the Encoming beam.

The votage from a common $240 \mathrm{kV}, 1 \mathrm{~mA}$ d.c. power supply is brought saparately to a pair of $30 \mathrm{M} \Omega$ surge resistors and $2000 \mathrm{M} \Omega$ voltage cividers via two 20 m long H.V. cables. Two 6 m long cables cannect the H.V. vacuum feedthroughs ta the surge resistors. Each cathode is connected to the feed-throughs via low inductance 160Ω wire resistors. These wire resistors were added after noticing that sparxs tended to deforme considerably the septum strips. The addition brought excellent results. Under normal operating conditions the current from the power supply is electronically limitad to $250 \mu \mathrm{~A}$. The assembled splitter is shown in Fig. 2.

Fig. 2 Photograpi of the assembled splitter outside the vecuum chamber.

Cperation

As it was already mentioned, the beam for the biorredical target has to be turned on and off without affecting the mair proton beam. This calls for the simultaneous setting of 4 parameters of the splitting system (septum position, high voltage, steerirg magnet current, icn suurce intensity) by the control computer, as shown in Fig. 3. Five control farameters have to be checked (septum positicn, high voltage, stearing magnet current and two beam currerits) to control the action of the system. The steerirg magnet, located at the exit of tre splitter, compensates for the effect of t-e electrostatic field on the mair portion of t ne beam. It produces a deflection angle of 6 mrad at 140 A. In order ta maintain a separation of $a_{1}+\alpha_{2}=6$ mrad (see Fig. 4) independent of the septum pusibiun d , the high voltege EHTV has to fulfill the following equation:

$$
\left[H T V(k V)=0.292 \cdot d_{1}(\mathrm{~mm}) \cdot d_{2}(\mathrm{~mm})\right.
$$

The compensating effect of the steering magnet depends also on the septum porition:

$$
\operatorname{SHCI}(A)=2.70 \cdot a_{1}(\mathrm{~mm})
$$

These two relations are presented graphically in Fig. 5. Near the park position the separation is gradually lowered to 3 mrads in order to tring the high voltage Lown lu 30 kV. Lerger values would cause arcing due to tne insufficient quality of the vacuum in the proton channel.

Fig. 3 Control diagram $=f$ the electrostazic splitter. Shown are the interconnections between the Control Computer and tho parameters for setting (four) and checking (fivej the splitter.

Fig. 4 Geometric perameters of the beam splitter. The distance bet ween the two cathodes (dotted area) is constant. The sum of the tim doflection angles α_{1} anu α_{2} is constant and must not cepend on the septum posiliun.

Fig. 5 Graphical representation of the parabolic relation between d_{1} and EHTV (common high voltage on the cathodes) and the linear relation between d_{1} anc SHCI (current through the steering megnet SHC).

Beam loss: Calculation and Experimental Results
In orcer to minimize the losses at the septum the optics of the 590 MeV proton beam line was arranged such as to provide a wide (typically 12 mm FWHM and slightly divergent beam at llee location of the splitter. Measured beam profiles were fitted with the program TRANSPORT to obtain the actual phase space beam ellipse at the entrance of the splitter. Beam losses were estimated using a code (SPLIT) based on a Monte Carlo method with the particles described by a binomial distribution. ${ }^{3}$ The program follows the fate of the randomly picked particles throughout the splitter channel. It determines the number of particles colliding with the septum electrode and it calculates the power deposited in the strips as well as the energy and angular distribution of the scattered particles. Calculations based on the septum geometry described earlier were carried out for typical splitter operating conditions. For a peeled-off beam of $15 \mu A$ from a $120 \mu A$ incoming beam, $0.5 \mu \mathrm{~A}(0.42 \%)$ were found to collide with the septum electrode. The calculated maximum temperature is $340^{\circ} \mathrm{C}$ for the Mo wire and $550^{\circ} \mathrm{C}$ for the first Mo strip. Without the wire the temperature of the first Mo strip would reach $840^{\circ} \mathrm{C}$.

The beam losses were measured by comparing the intersity of the incoming and splitted beams. Each beam was monitored separately using 3 calibrated beam current probes.
A beam loss of $0.5 \pm 0.1 \%$ was measured for a splitting ratio and an incoming beam of intensity and shape equivalent to the values used in the calculation. Measurements were also done with intensities of up to 150 and $20 \mu \mathrm{~A}$ for the incoming and peeled-off beams, respectively. The losses scaled as predicted and no deterioration with time was observed.

Profiles of the splitted 590 MeV beam 0.5 m after the splitter and at the entrance of a septum bending magnet, 4.5 m further downstream, are shown in Fig. 6.

Fig. E Profiles of the splitted beam measured $\overline{0.5 \mathrm{~m}}$ (left) and 5 m (right) after the splitter. The shaded area indicates the 20 mm thick septum coil of the bending magnet which separates completely the beam for the biomedical irradiation facility (small profile) from the main beam. At this point the beams are brought to two separate foci. The horizontal emittance of the unsplitted syu MeV beam is $\pi \cdot 2.4 \mathrm{~mm}$ mrad for 87% of the beam.

Figure 7 shows a radiograph taken from one of the several septum configurations used for tests. The blackening at the left of the picture corresponds to the power distribution predicted by the code. Lack of sufficient flatness in some of the strips is probatly the reascn for the dark spots seen along the seftum.

Fig. 7 Radiograph (Kodirex) taken from a septum elsctrode. This septum (49 molybdenum strips, 7 mm wide, 0.1 mm thick, spaced 1 mm apart) was used to split in half a 590 MeV , $12 \mu \mathrm{~A}$ proton beam for a total of $20 \mu \mathrm{Ah}$. The radiograph was laken 2 days after the septum was removed from the beam line. Dose rate at the entrance of the septum was $3 R / h r$. Time of exposure was 5 sec. Shown are the first 32 strips.

Acknowledgments

It is a pleasure to acknowledge the engineering and technical assistance of 0. George, P. Gheno, K. Hasan, E. Mariani, D. Rossetti and W. Rothacher. The skilled craftmanship of the S.I.N. Mechanioal Shop has been particularly appreciated. Helpful discussions with W. Joho, C. Kost (TRIUMF) and L. Rezzonico are gratefully acknowledged.

References

1. W. Joho, Recent and Future Developments at S.I.N., Proc. 8th Int. Conf. on Cyclotrons and their Applications, IEEE, NS-26 (1979), p. 1950 - 1957.
2. M. Olivo, The Electrostatic Extractor Channel for the S.I.N. 590 MeV Ring Cyclotron. Proc. 7th Int. Conf. on Cyclotrons and their Applications, Birkhäuser, Basel, 1975, p. 292-296.
3. W. Joho, Representation of Beam Ellipses for Transport Caloulations, SIN-Report TM-11-14, 1980.
