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PULSED RF OPERATION ANALYSIS* 

M. Puglisi and M. Cornacchia 
Brookhave” National Laboratory 

Upton, New York 11973 

The need for a very low final amplifier output 
impedance, always associated with class “A” operation, 
requires a very large power waste in the final tube. 

The recently suggested pulsed rf operation, while 
saving a large amount of power, increases the inherent 
final amplifier “on linearity. 

A method is presented for avoiding the “large 
signal no” linear analysis” and it is shown how each 
component of the beam induced voltage depends upon all 
the beam harmonics via some “coupling coefficients” 
which are evaluated. 

Introduction 

One of the requirements of the rf systems for 
proton accelerators and storage rings is the low 
impedance they must present to the accelerated beams. 

Beyond some limits the low output impedance can be 
achieved only by means of feedback amplifiers, of which 
the common anode amplifier is a good example. This 
implies that the system has to react strongly to the 
beam. 

Moreover, the final amplifier that drives an 
accelerating cavity has to work in a very large 
dynamical range always involving the nonlinear region 
of the active element characteristics. 

The inherent nonlinear characteristics of the 
electron tubes (the cut off and the saturation are 
important aspects of these nonlinearities) make the 
circuit analysis hopelessly complicated and each case 
must be treated numerically, thus excluding the 
possiblity of eve” the simplest analytical. prediction. 

The problem becomes less serious if we can assume 
that the beam and the drive are periodic functions of 
the time with the same period T. In the absence of 
coherent longitudinal beam oscillations, this 
hypothesis is verified. 

If we assume this periodicity, the” the tube 
parameters which depend upon the applied signals can be 
treated as periodic functions of time only, with the 
same period T, and the problem is reduced to the 
analysis of a linear, time dependent electrical 
network. This analysis can be performed in the time or 
frequency domain. We shall discuss both approaches, 
since they show different aspects of the same 
phenomenon. 

Transient Analysis In Class “C” Operation 

The tube nonlinearities are always ignored when 
the tube is operated in class ‘a’, This is very 
reasonable because class ‘a’ is selected in order to 
achieve a “early linear operation; thus, the 
“onlinearities can be taken into account only in the 
second order approximation. Under class ‘a’ operation 
the amplifier output impedance can be defined, in the 
sense of Thevenin’s theorem. 

* Work performed under the auspices of the IJ.S. Dept. 

of Energy. 

On the other hand, class ‘a’ operation demands a 
very large quiescent current in the tube and one has 
to pay in power consumption and in oversizing the tube 
the advantages, not always clear, of having a linear 
final amplifier. 

It has been suggested (BNL 51246) that the final 
amplifier could exibit the same good performance eve” 
if operated in class ‘c’, as long as the final 
amplifier circuit contains a strong feedback. (For 
instance, a cathode follower which is an amplifier 
with a feedback ratio approaching one in the frequency 
band pass). 

The advantages come from the fact that class ‘c’ 
operation greatly reduces the power wasted in the tube 
and, consequently, al lows the use of smaller tubes 
than those required by class’s’ amplifiers. The class 
‘a’ operation is, by definition, a nonlinear one and 
any attempt to “linearize” the problem would not be 
justified. 

A first step forward is to recognize that, when 

operated in class ‘c’, the tube behaves like a switch 
in series with a resistor. During the part of the rf 
period the tube is a”, the power supply is connected 
to the load through the resistor; during the part of 
the rf period the tube is off, the load is 
disconnected from the power supply or, in other words, 
the tube behaves as an infinite resistance. 

We can schematize the feedback amplifier with a 
parallel tuned circuit driven by two ideal current 
generators: the generator GT that stands for the 
current due to the tube and the current generator GB 
that schematizes the beam action. Due to the supposed 
existing feedback the generator GT depends upon the 
voltage across the circuit; moreover, due to the tube 
nonlinearity, the resistor also depends upon this 
voltage. This scheme can be extended to many feedback 
amplifiers connected to a resonant load, and one would 
have to specify the circuit parameters accordingly to 
the actual amplifier under analysis. 

If we suppose that both the beam and the drive 
are periodic functions of time with the same period, 
then, applying the model described above, we can make 
the two generators independent upon the voltage across 
the circuit, but with parameters chosen so as to 
account for both the feedback and the tube 
nonlinearity. In this way the resistor becomes a time 
dependent resistor. Moreover, because we are 
concerned only with the beam induced voltage, we can 
set the current coming from the generator GT equal to 
zero and we are left with the circuit drawn in Fig. 1. 

With reference to Fig. 1, 

R(t) = R(t + T), I(t) = I(t + T) and T = ZqE 

is the period. 

The function R(t) can be approximated using a set 
of step functions of suitable amplitudes and delays. 

The most important conditions for estimating the 
system behavior are met if we assume that the resistor 
has only two values, R and infinite, and if the beam 
is simulated by a train of delta functions. A very 
good approximation is obtained if we select the finite 

resistor value equal to the inverse of the mea” tube 
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transconductance for a cathode follower amplifier. 
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Fig. 1. The parameters L and C stand for the 
‘cavity-amplifier’ fundamental mode. The resistor R is 
a time function resistor whose value depends upon the 
cavity losses, the tube, and the feedback ratio. 

The circuit analysis of the model described above 
is straight forward, and was carried out with the state 
variable method, where the state variables V and I are 
the voltage in the capacitor and the current in the 
inductor respectively. 

We divide the interval T in four parts, as follows: 

1. The resistor is given the value R. The 
initial conditions are V, and I,. The time ranges 
from zero to Tl. At the end oE the first interval 
the state variable values are Vl and 11. 

2. The resistor is unchanged. The time ranges 
from zero to T2. Because at the beginning of this 
interval the beam is supposed to excite the circuit, 
then the initial conditions are VI + q/C and Il. 
At the end of the second interval the state variable 
values are V2 and 12. 

3. The resistor value goes to the infinity (the 
tube is off). The time ranges from zero to T3. The 
initial conditions are V2 and 12. At the end of 
the third interval the state variable values are V3 
and 13. 

4. The tube is again on and the resistor is given 
the value R. The time ranges from zero to Tq. The 
initial conditions are V3 and 13. The state 
variable values at the end of this interval are 1’1, 

and I&. 

The various sub-intervals are not independent 
because we must have T=Tl+T2+T3+T&, and the 

best amplifier performance can be obtained only under 
approprrate selection of these sub-intervals. It will 
be shown that the sub-intervals T3 is by far the most 
critical in reducing the wake voltage at the beginning 
of the next rf cycle. 

Let lAl,\Ri,lSi,ITj be the matrices that aCCOUnt 
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for the tranformations in each of the four 
sub-interval. 

Then we can write: 

I$/ = 1 T 1 .I S 1 .! R / -1 A t .t X0/ 

+ t T t .t S 1 .t B t .t q t = t G 1-j X,t + t Ft 

where 1 XJ and ( Xd are the final and initial Skate 
vectors, respectively, ) B I is the matrix that 
accounts for the effect of the beam, and 1 q 1 is the 
vector (o,q) describing the amplitude of the delta 
function that represents the beam. 

condition 

i tI/ -IG+ot ‘IF/ 
;~;:zml I ,) ishLhe pFrtzi;atrix; the .ss;rtf;:ngof ,‘,“; 

1s vector 
conditions at the beginning of each cycle. 

In Fig. 2 we give an example here the parameters 
are chosen so as to fit the case of the ISABELLE 
accelerating amplifiers. (C=1.2 E-8, L=3.82 E-5, R=5 
OF2 infinite, q=3.4 E-5). The time Tl (measured in 
degrees, with the total interval T=360”) is allowed to 
vary between 10 and 120 degrees and T3 is allowed to 
vary in the same interval. It is important to 
recognize that a proper choice of the cut-off interval 
can greatly reduce the wake voltage on the condenser 
and that, depending on this device, the wake voltage 
appears positive or negative, thus passing through a 
true zero. 
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Fig. 2. Voltage at the end of the rf cycle on the 
capacitor versus Tl. Interval T3 is the 
parameter. The solid lines indicates positive 
voltage, the dashed lines indicates negative 
voltages. 

Changing the value of the resistor R from 5 to 10 
and even to 15R does not appreciably change the 
numerical results (for R=28R the circuit is critically 
damped when the tube is on). 



Frequency Analvsis of a System With Time Varying 
Parameters 

The behavior of the final amplifier discussed in 
the previous section cannot be described in terms of an 
impedance in the conventional sense. As we shall see, 
a modification of this concept, suitable for time 
varying systems is attempted. 

In a system where the parameters do not vary with 
time, the relationship between the current driver (the 
beal! and the voltage is defined in terms of the 
Green’s function h(r) which depends only on the time 
interval T between the occurrance of the 6-function of 
current and the time at which the voltage is observed: 

+a 
v(t) = J- h(T) i(t-?)dr (1) 

-m 

The convolution theorem then gives, for the Fourier 
transforms of the functions in Eq. 1: 

C(w) = i;(lAJ,*?(,, (la) 

In a system where the parameters vary with time, the 
Green’s function is also function of this “absolute” 
time t: 

h = h(t,T) 

If the circuit parameters vary periodically with time, 
as in the model described in the previous section, the 
Green’s function can be expanded in Fourier series: 

h(t,r) = y h,(T) ejnwot 
-cc 

where w. = 2n/T, and T represents the time interval 
between the occurance of the S-function of current and 
the observation of the voltage. 

The voltage at time t is given by 

where T.k is the amplitude of the k-th Fourier 
coefficient and ii,-k!k ho) denotes the k-th harmonic 
of the Fourier transform, with respect to T (delay 
event-observation), of the (m-k)th Fourier coefficient, 
with respect to the “absolute” time, of the Green’s 
function. 

Equations 5 and 6 show that the conventional 
definition of impedance does not apply to systems with 
time varying parameters. In such systems, expression 
la is replaced by the linear combination 5 or 6 of all 
the harmonics of the driving current. 

In practice, the calculation of the G terms, which 
we shall Call the “coupling coefficients”, is 
cumbersome and involved but for a very simple circuit. 
In order to give an idea of the relative importance of 
these coupling terms, we consider the simplest decay 
model, the R-C circuit and we choose its decay time 

To to be aproximately the same as in the example’ of 
the previous section (Fig. 1). 

Moreover, we suppose that the conductance G varies 
with time according to the function G = G;(l- E cos 

w,) I E > 0. This smooth variation of the conductance 
is obviously more physical then the step function 
assumed in the model of the previous section. 

After some manipulation we find, for the h,( T) 
terms of Eq. 3, 

h,(T) = $ e -T/To 

where I, is the modified Bessel function of order n, 
and u(t) is the step function, u(T) = 0 for r < 0, u(t) 
= 1 for T > 0. 

IJnder the assumption, justified in our example, 
TV << 2n /o. ( To = 0.06 v set, 2n /o. = 4.27 psec), 
the sine in the argument of the Bessel function can be 
replaced by the arc, and the-Fourier transform of 7 is 
easily found: 

+a +m 
V(t) = j- h(t,T) i(t--r)dT = 1 F,(t) ejnwot (4) hek(kwo) = 

-03 -m 

where 1 
(E/To) ‘“-kl 

-___ 

F,(t) = 7 h,(T) 

/m-k/ 

i(t--r)dr 
-03 

The Fourier transform of Eq. 4 gives: 

4-m fm 
V(o) = 1 JFn(t) e-j(w-nwo)t dt 

-co . ..m 

= y qw-nwo) = y Ln(w-nwo).~ (w-no,) 
-ca .-cm 

(5) 

’ [F _ (!?+$+ $ (&k)j112 

In Fig. 3 we have considered the terms 
i-il-k( kW o) which couple all the harmonics of 
the current to the first harmonic of the voltage. In 
Fig. 3 we plot the ratio of the moduli 

where i; : 
and ln denote the (0 -n a,)-th Fourier 

t rans for:s of h,( T), i(T ). Equation 5 shows that an 
infin ite number of harmonics of the driving current 
contributes to one harmonic of the induced voltage. In 
particular, if the driving current is periodic with the 
same period T = 21r /wo, substituting its Fourier 
transform in Eq. 5 and antitransforming we obtain the 
induced voltage V(t) that must be periodic with the 
same period T. Equating coefficients with the same 
frequency we obtain: 

+CC 

v 
m = ,g, lk’hm-k(kwO) 

(6) 

( iil-kho)( /I h,(kq,)l 

I.e., the modulus of the 
normalized to the term 1 i;,r 

coup;ii”wh~~~,“lue~~s 
ko, 

would define the voltage in a system with non ti”: 
varying coefficients. In other words, 1 G,( Lo,)) 
couples the kth harmonic of the current to the kth 
harmonic of the voltage. The points in Fig. 3 refer 
to three values of the modulation = 0.1, 0.5, 0.9. 
Figure 3 shows that, as the amplitude of the 
modulation increases, the coefficients which couple 
the different harmonics ‘c of the current to the first 
harmonic of the vol tag- become important with respect 
to the value corresponding to k = 1, which couples the 
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same haraonic of the voltage and current. This value 

jh,(k )I > at the limit E + 0, reduces to the impedance 
as defined in a system with non tine varying 
parameters, 1s \,ne ,‘a~ ‘J,TCLF~ cppl.ymg t-his limit PO 

Eq. PI. 
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Conclusion 

The introduction of a network with time varying 
parameters seems to provide a method of obtaining 
analytical results as an alternative to the direct 
non1 inear treatment. It must be noted that the 
c:oupling coefficients, that seem somewhat disturbing, 
depends upon the non linearity which is inherent to 
.~ny tube characteristics. Therefore a certain amount 
of coupling is to be expected even in the so called 
class A1 operation. In any case, the extent of what 
is tolerable in terms of tube nonlinearity is an 
important question, still to be addressed. 

PLY. 3. Coupling coefficients for different values of 
the modulation of the conductance. These coefficients 
cwple all the harmonics of the current to the first 
harmonic of the voltage. 
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