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Abstract Variational Equations 

A Newton's search method is presented which ef- 
ficiently finds closed orbits in a ring whose lattice 
contains both linear elements, such as drIEts and 
quadrupoles, and nonlinear elements such as dipoles 
with a small radius oE curvature, sextupoles, etc. 
The method simultaneously determines the tune of the 
closed orbit. By observing how the location of the 
closed orht depends on the total momentum, the n 
and q' functions are determined exactly (including 
nonlinear terms in 6). By observing how the tunes 
of the closed orbit depend on the total momentum, the 
chromaticitles are determined exactly. The esfiential 
tool employed is the simultaneous integration of the 
equations of motion for a trajectory along wtth the 
variational equations for neighboring trajectories. 

Suppose the orbit equations for a lattice are 
written tn the form 

U’i = fi(<,e) i = 1....4. (1) 

Here i? denotes a four-component vector whose entries 
are the two coordinates and two momenta transverse to 
the beam axis. The quantity 0 denotes some generalized 
angle which increases by 2r in going around the 
lattice, and a prime denotes differentiation with re- 
spect to 8. 

Variational equations describe all orbits near a 
particular orbit. Let G*(B) denote a particular orbit 
of fnterest. Then orbits near this orbit can be 
written in the form 

Introduction 

Chromaticity correction is often essential for the 
operation of synchrotrons and storage rings. Methods 
for the calculation of chromatici.ty have been developed 
by several authors. They range from completely 
analytical calculations to hybrid calculations that 
make use of analytical results combined with numerical 
results from matrix lattice codes. In some cases, 
these different methods have been applied to the same 
problem with differing results. There is also concern 
that some methods omit nonlinear dipole contributions 
which can be very important for small. rCngs. This 

paper describes a purely numerical method for 
chromaticity calculation that is both conceptually 
simple and exact. Its use can therefore serve as a 
benchmark for checking other methods. 

; = C**(e) + E$ (2) 

where E is a small quantity. By definition, c*:*(e) 
satisfies the equation (1). Inserting the prescrip- 
tion (2) into the equation of motion (I), and re- 
taining terms of lowest order in E, shows that ; 
must satisfy the variational equation 

3' = Ax(B);. (3) 

Here A* is a 4x4 theta dependent matrix defined by 

Method of Computation 

A*ij(B) = afi(:,B)/auj . 
u = J*(e). (4) 

Because the variational equations are linear, 
their solution for all initial conditions can be ob- 
tained by a finite amount of computatton: Let 
0 = 0 denote some arbitrary point in the lattice. 
Consider the first-order linear matrix variational 
equation defined by 

BrieEly stated, the method of chromattcity cal- 
culation to be described is as follows: 

1. Specify the machine lattice including 
dipole strengths, quadrupole strengths, 
sextupole strengths, etc. 

B*'(e) = A*(B) B*(8) 

with the initial condition 

7 -. Specify the momentum of a test particle. 

3. Find the closed orbit corresponding to this 
momentum. 

4. Find the tunes of this closed orbit. 

5. Repeat steps 2 through 4 for a range of 
momentum values, observe how tunes vary 
with particle momentum, and thereby determine 
the chromaticity. 

B*(O) = I. (6) 

Here B* is a 4x4 matrix, 1 denotes the 4x4 identity 
matrix, and A* is the same matrix as defined in (4). 
That Is, the integration oE (5) with the i.niti.aL con- 
dition (6) is equivalent to the integration of 15 
first-order equations. Now let $0 be an aebltrary 
four-component vector. Consider ti(e) defined by 
the equation 

Obviously, the key elements in this procedure are steps 
3 and 4. They are carried out with the aid of a 
numerical integration code which silnultaneously inte- 
grates the equation of motion for a particle trajectory 
and the variational equattons for neighboring tra- 
jectories. 

G(e) = B*(eW. (7) 

It is easiLy checked that w(B) is a solution to the 
variational equations (3) and satisfies the arbi- 
trarily prescribed initial condition 

G(0) = 3. (8) 
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Determination of Closed Orbits 

Consider an imaginary plane which intersects 
the design orbit at right angles somewhere in some 
straight section. Then it is obvious that every other 
orbit will also intersect this plane. Indeed, every 
orbit intersects this plane each time it goes around 
the lattice. 

Furthermore, every orbit with a given fixed total 
Imomentum p is completely determined by the values of 
its two transverse coordinates and two transverse 
momenta at the moment of intersection. To see that 
this is the case, it is only necessary to realize that 
these four quantities may be viewed as a complete set 
oE initial conditions for the four first-order orbit 
differential equations, and to recall that the 
solution of a set of differential equations is uniquely 
and completely specified by initial conditions. The 
whole situation may be summarized by saying that there 
is a certain 4-dimensional hypersurface in phase space 
which cuts across every phase space trajectory for the 
orbits under study. In addition, each orbit is 
uniquely specified in terms of any point (four coor- 
dinates) at which it crosses this surface. The 4- 
dimensional hypersurface just described is called a 
Poincare surface of section. -- 

Next observe that orbits in the lattice generate a 
mapping M of the surface of section into itself. Con- 
sider a point on the surface of sectfon. Since any 
such point requires four numbers for its specification, 
it is convenient to denote these four numbers collec- 
tively by a fourcomponent vector $. Now use the co- 
ordinates of d as initial conditions, and follow the 
orbit with these initial conditions once around the 
lattice until it again crosses the surface of section 
at some point $. The mapping Y, called the Poincare 
9, is simply defined by the relation 

2 = M;. (9) 

That is, M describes the effect of one circuit around 
the lattice. -____ Note that since the eGt= zotionA 
are in general nonlinear, the relation between b and a 
defined by the Poincare map M is also nonlinear. 

Much of what one wants to know about orbits is 
equivalent to a knowledge of M. For example, the 
determination of a closed orbit is equivalent to the 
discovery of a point 1, called a fixed point, which 
is sent into itself under the action of V, -- 

Mf = I?. (10) 

That is, the set of initial conditions ‘; Ear a closed 

orbit must, by definition, be mapped into itself by one 
circuit around the lattice. 

Let 2 be an arbitrary point in the surface of 
section and let a" +-t, where E‘ is a small vector, be 
a point near i. Vow consider the point H(a + 2). .4c- 

cording to equation (9), this point should be near 6 
since Z + 2 is near 2. In fact, there is a power 
series expansion in 2 of the form 

M(i + i) = i + La; + O($) (11) 

where La is a 4x4 matrix which will be called the linear 
part of M at a. 

It is easy to see that the linear part of M is 
available from the variational equations. Suppose the 
surface of section is located at 13 = 0. 
the orbit with initial conditions a'. 

Let ii,(B) be 
That is, 

G,(O) = 2 (12) 

Then this trajectory must also satisfy the equation 

Ga(2n) = MZ = ;. (13) 

Next, with the aid of the variational equations, the 
nearby trajectory Ga+ s(9) with initial. conditions 
2 + ? is expressible in the form 

4 
~~+~(8) = G,(e) + B,(D)2 + O(i2). 

[See equations (21, (71, and (8j.l 

(14) 

Now put 0 = 2x in equation (14). The result is the 
relation 

M(: +?I = ;,+,(Zn) = ~~(27~) + Bag + O(E2)- (15) 

Comparison of (15) and (LL), with the aid of (131, 
gives the result 

La = Ba(2n). (16) 

The stage has been set for the determination of 
fixed points of M with the aid of second map C, called 
a contraction w, defined in terms of M. The map C 
is defined by requiring that its action on the 
arbitrary point H‘ be given by the rule 

c"a=‘a'-(I - La)-1 (; - MA). (17) 

Now let 'g be-an arbitrary point in the vicinity of a 
fixed point f. The contraction map C has the remark- 
able property that 

Z = lim cn $. (18) 

n+- 

That is, a guess as to the whereabouts of a closed 
orbit is sufficient starting information to contract 
in on it exactly. In practice, the starting guess can 
be taken to be the initial conditions for the on- 
momentum design orbit, and only a few applications of 
C are required to find a closed orbit to an accurilcy of 
10 signiEicant figures. The construction of C is based 
on Newton's method, and the convergence is extremely 
fast because the error is squared with each application 
of c. 

Determination Of Tunes 

Suppose a closed orbit has been found. Let Bf be 
the matrix solution to the variational equations around 
this orbit. Then the betatron Euncttons can be com- 
puted from Bf(0), and the tunes are related to the 
eigenvalues of Lf = Bf(2n). In particular, let P(X) 
be the characteristic polynomial associated with Lf 
by the formula 

P(A) = det (Lf - AI). (19) 

Then the two betatron oscillation phase advances $t 
for one lattice circuit are given by the relations 

I& = cos-l[-b ? (b2 - c)"~] (20) 
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where the quantities b and c are defined by the 
equations 

b = [P(l) - P(-1)1/16 
(21) 

c = -1 + [P(l) + PC-1)1/8. 

Correspondingly, the associated tunes T+ are given 
by the formulas 

T+ = ? ($+/Zn) + some integer 
(22) 

T- = ?r ($-/2n) + some integer 

The integer ambiguity in the tunes can be removed if 
the lattice is periodic, and the phase advances per 
lattice period are less than 2n . It is of interest 
to note that the relations just given make no assump- 
tion of mid-plane symmetry, and hold in the general 
case. 

Applications 

The general methods outlined in the previous 
sections have been applied to two specific lattices 
which are under consideration for a Proton Storage Ring 
to be built at the Los Alamos Natonal Laboratory. The 
lattice will have ten identical periods. The elements 
of each period are listed below: 

Element Path Length or Angle 

drift 2.28646 m 

hor defocus quad . 5m 

drift .45 m 

edge O" (or 18O) 

bend* 2.54948 m 

edge 00 (or 180) 

drift . 45 m 

her defocus quad .s m 

drift 2.28646 m 

Total 9.02240 m 

"1.2 Tesla field and design momentum given by BRHO = 
4.8691481 Tesla meters. 

One proposed Lattice has normal entry bend magnets, 
and the other has paraLle1 Eaced bend magnets. 

Let po denote the design momentum, and let p be 
a momentum of interest given by the relation 

p = pO(l + 6). (23) 

Also, suppose a tune T is expanded in the form 

T(6) = T(O) + &T'(O) + . . . (24) 

Here T'(O) measures the linear chromaticity. Then 
the following results are found for the lattice just 
described: 

Normal Entry Case 

Horizontal Defocus Quad Strength = -2.68 T/m 
Horizontal Focus Quad Strength = 1.95 T/m 

Thori (0) 
TvertT") 

= 2.2540596 
= 2.2499258 

Thoriz'(O) = -1.0762 

Tvert'(0) = -1.2847 

Parallel Faced Case -- 

Horizontal Defocus Quad Strength = -1.92 T/m 
Horizontal Focus Quad Strength = 2.72 Tim 
T. noriz(O) = 2.2541028 
Tvert(") = 2.2554377 
Thoriz'(o) = - .92813 

Tvert'(") = -2.11135 

It is evident that both natural chromaticities 
are negative. Provisions have been made for sextupole 
elements in the lattice to make the chromaticities 
more negative or to bring them to zero. Detailed 
numbers, with an excessive number of significant 
Eigures, will be presented elsewhere in order to pro- 
vide benchmark results for comparison with other 
methods of computation.1 

As a result of making a series of calculations, it 
is Eound that the natural chromaticity of a small ring 
can vary widely over the tune diagram; and, contrary 
to common lore, can even be positive. It is also 
found that nonlinear dipole contributions can be very 
important for small rings. Consequently, methods 
oE chromaticlty calculation which treat dipoles in the 
linear transfer matrix approximation are not expected 
to be correct for small rings. 

Finally, preliminary comparisons indicate good 
agreement with the program DIMAT. The program DIMAT 
makes use of TRANSPORT2 which retains all non-linear 
terms in the equations of motion through order two. 
Thus it appears that second order terms (which are 
omitted by linear transfer matrix approximations) can 
be very important for small rings; and third order and 
still higher order terms (which are neglected by 
TR.4NSPORT) need not be important even Eor small rings. 
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