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Summary. 

Using Hamiltonformalism with action and angle vari- 
ables, uncoupled and coupled orbit motion of particles 
in a storage ring are presented. Analytical expressions 
for the Twiss parameters, using Fourier components of 
the guide field, are deduced from the linear Hamilton- 
function. With these lattice functions, expressions 
which represent influences of non-linearities are 
given. The description of coupled motion is, after some 
canonical transformations, reduced to a one-dimensional 
problem. The motion is represented in a phase-pia;e, 
which has already been done for AVF cyclotrons. 9 

The theory will be applied on the Dutch proposed 
synchrotron radiation source PAMPUS.3,4 

The results of the linear theory as given here are 
compared with matrixcalculations. Results for non- 
linear resonances are compared with results obtained 
by using the theory of Guignard.' 

Introduction. 

The orbit motion in a storage ring is deduced from 
a general Hamiltonian. 4y5*6 Interested in the Twiss 
parameters we first consider the linear (rsadial) beta- 
tronmotion, described bv the Hamiltonian 

H = ipt + $(s2(S) - n(e>>x2 

with the reduced variables 2 = x/R and p = p /p ; 
E = R/p and n = -(R2/Bop)(aB,/a~), wherexR ig the mean 
radius and p the radius of curvature. The azimuth S is 
the independent variable. 

It is convenient to use action and angle variables 
.I,:> defined by 

X = J?e~/-i-~~~($-Qe) and px= 1/m*sin($-QS) (2) 
where Q is the radial tune. 
The new Hamiltonian now becomes 

K(.J,$) = H(Z,ijx) - QJ = e2J + g2J (3) 

where e 
part. Tg' 

is the constant part and g2 the oscillating 
1s oscillating part can be removed by a trans- 

formation generated by the function 

G,( 3,$,e) = -5q~ - Yu,($,e) (4) 

In general we can set 7 ,I0 

u,(q,e) =k&,a,k(e)cos2k(@QS) + b2,(e)sin2k($-Qe) 
I<\ 

The coefficients a and b2k have to be determined by'>' 
the requirement of2$anishing oscillating parts and 
contain power 

1 
eries of the Fouriercomponents of the 

guide field (E - n);' a2k and b2k have the same periodi- 
sity as the guide field. 
Furthermore we note the relation between the action 
variable j and the "emittance of a particle" ~~ : 

j = i~x/R (6) 

Considering the common phase-space ellipse (x,dx/ds) 
one can deduce the relations 

(7) 

(8) 

With eq.(S) the lattice functions, expressed in Fourier 
components of the guide field, are given by 

Bx = (R/Q).(I+ C(-l)k2kb2k)-1 
k=l 

YX 
= (Q/R).(~+ k,c, 2kb2k)-1 

2 
and furthermore ffx = 8,y,- 1 . 

(9) 

(10) 

The behaviour of the "analytical calculated betatron- 
function for the PAMPUS lattice ' is shown in figure 1. 
Comparing this with the result of a matrixcode 4 one 
sees that there is a very good correspondence. 

lo11 
5r 

-matrixcalculations 
. analytical cal. eq(9) 

1 nrl i 1 rln 
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Figure 1. Behaviour of radial betatronfunction for 
PAMPUS with Q=2.10 

Non-linear uncoupled orbit motion. 

Non-linear fields often give rise to resonances, 
which may limit the stability region. Considering the 
one-dimensional,radial, motion, the Hamiltonian becomes 

H = ii: + $(E~ - n)Z2 + h(j;,px,e) (11) 

This Hamiltonian can be rewritten as: 

i = 1;; + jQ2T2 + C a. 
j,k J,k 

($,;j;k 
x 

(12) 

where j and k are positive integers(j+kl3); n=j+k is 
the degree of the Hamiltonian. Furthermore the phase @I 
(do=R/QBdS) is the independent variable and 

where we omitted the 
We introduce action 

and angle variables, 

;=mcosJ,, x i = a sin + with I={QE~/R (13) 

The non resonant oscillating parts of n th degree in the 
Hamiltonian can be removed, using a transformation, 
generated by a function of the form 6 

G2(b$,$) = - f$ - I -n’2un(JI,$) (14) 

The new Hamiltonian, containing resonant terms, now 
becomes: 

K(i,ij) = Q: t C C F 
br) i(m;$+prN$) 

e 142 

mr p, n'Pr 
(15) 

The function F(m) (#) is the_ coefficient of a term of 
n-th degree ana argument mJ1 ; m a take the values 
m = fn, C(n-2),... . Exp;yding F>" in a Fourierseries 
delivers the quantity F 

The p harmonic of F (m)n'P ' 
(4) drives the resonances 

m Q =rp N ( note tha? in the linear case d$/d@ = -Q ). 
Nris thg periodicity of the non-linearity. 
The $-dependence is now removed by a transformation 

7 = f and G = 5 + (pr/mr)N$ (16) 

which is generated by the function G 

G3(T,$,$) = - ?G - (pr!mr)N$I 
3 

: 

(17) 

The Hamiltonian can now be written as 6 

E(I,s) = (Q-!$ N): + 21F + XF)I =n'2 (18) 
r 
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where "t 

F 
mK) 

and ;r(::;,I;;Fboth positive, and 

= F 
n¶Pr naPr 

The stability _region can be predicted from the 
invariant K(I,$). The criterion for the fixed points 
(d=I/db = 0 , d$/d$ = 0 ) leads to the condition 

=v2- ’ 
If+. 

= rt(Q - 2 
r 

where 7 is the action variable 7 
unstablg'?ixed points. 

A criterion for stability is that 
entirely inside the stable region in . _. 

belonging to the 

the bgag lies 
the (I,$) phase 

plane. Representing the beam by a circle ( correc! when 
no non-linearities are present ) one gets the require- 
ment 6 

(20) 

zn 

If.0. 2 
c,(Q/Rk, 

where c * is a constant depending on the form of the 
stable Pegion and so depending on n 6 : c ~2.0 and 
c = 1.21 . Eqs.(20) and (21) lead, for a &ven excita- 
t$on term, to a minimum distance to the resonance line. 

We will illustrate this for the third degree reso- 
nance 3Q=p N excited \y sextupole fields. The minimum 
distance ig given by 

IQ - g-N1 = ~IF$(~QE~/R)* 

with Fi3)= (G/24) (85'2Q1'2R1'2) (a2BZ/aX2)/(Bop) 

(22) 

The sextupoles needed for chromaticity correction in 
PAMEJUS 4 (N=8) can for example excite the resonance 
34=16 . For a particie with a IO o-amplitude, the 
minimum distance is IQ-16/3 / = 0.036 . 

Furthermore we note the $ and 4 independent 
Hamiltonian of eq.(15) for m ~0 , p =O . 
This condition can only occu$ for e6en degree n. In 
this case there is a change of the tune, depending on 
the amplitude. Considering the fourth degree Hamilton- 
function the tune-shift is given by 

(0) 7 AQ = 2 F4,0 (23) 
with Fi")= (3/16)R8u2 + (1/16)83R(a3Bs/ax3)/(Boo) 

The first term gives rise to an inherent tune shift 
and the second term is the contribution of octupole 
fields. The needed octupole fields to provide a certtin 
tune shift(spread) can be determined. As an example : 
fyr PAME'gS at Q = 3.25 the octupole field should be 
a B / ax ) = 100 T/m3 in order to get a tune shift of 

IO- 5 for a particle with a 10 o-amplitude. 

Non-linear coupled motion 

Two transverse motions may be coupled in the 
presence of non-linearities. We will consider here the 
influences of sextupoles and octupoles and the 
Hamiltonian of interest is 

-2 + 47x2 + C a. 
j 1 J,l 

(8)x = -j-l (24) 
, - - 

x, z. and ix, pz 
are relative variables according to 

eq. (1). 
The e-dependence in the linear Hamiltonian is removed 
by a transformation, generated by the function (see 
also g> 

G,(x,$,,~,$,,e) = (R2/2Bx)x2{tan(~x+~x(e))-axl + (25) 

+ (R2/28z)z2~tan(~,c~=(8))-CI 1 
z d6x z 

where 8, z is the betatronfunction , c1 ' e----3 =- - 
I e x4 2R d8 

and p, s= Qx s8 - ~(R/B,,,)d8' 
, , 

The Hamiltonian can now be written as K(J 
Keeping in this Hamiltonian only the non- 

,$x,Je,$s,e). 
F. Inear 

resonant terms and applying the moving-coordinate trans- 
formation of the type as given in eq.(16), which is 
now generated by the function G 

5 : 

G5(J1,$x,J2,$zt8) = -J1qx -J2+z-(ml/m2)J2$x -QxJlB + 

(26) 
m, PrN 

with Jl= Jx-(ml/m2)JZ , J2= Jr , $J,=$,+ *x+ '6;- 8 

The new Hamiltonian now becomes:' 

.i = "QJ, + 21F 
(ml 9,) 

1 (J1+ 

ml l$y 

2 

Im,lylm21rp r 
-J2> ~2 . 
m2 (27) 

with m26Q = mlQx + m2Q, - p,N 
. cos b2Q2+~F) 

is the coefficient belonging to a term of 

Im 1 in x and Im 1 in z ) and 
1 drives the rzsonance. 

is not present in this Hamiltonian Jl= constant 
he problem of describing the couplingsresonance is 

reduced to a one-dimensional problem,for which it is 
now convenient to present it in a phase-plane. The 
fixed points are given by dJ2/d8 =0 and d$,/d&O . 
In the following sections we will study several reso- 
nances with the add of phase-plane figures. From these 
figures we can define a minimum 6Q value in order to 
avoid unstable motion. These values will be compared 
with results obtained by using the theory of Guignard.' 

- g-prN 24 + Q : skew sextupoles. 

This resonance can be(2:fjt;t \y skew sextupole fields. 
The excitation term F 

(2,l) 
F2,1 =~~~8)8x8~'2~~~~2/Bop)(a2~s~~x2)ei(2~xf'z) (28) 

The study of phase plane trajectories is somewhat 
si%wlified by the trancformation 

x = fi2cos $, and y= 6-sin$2= 
and the new Hamrltonien,,,is ca t K. 

(29) 
led 

The fixed points in (x,y> phase plane are now given by 

d:/d6= &Q; + 2filFl$ = 0 
dG/d6= -filFIJ1-6Qx -3fiI~l'Lx~ -/~YIF~;~ = 0 

(30) 

where we omitted the subscripts at F (2,1) and 
SQ=2Q +Q -pN. 2,l,P, 

It follgws ffom e<.(30) that the flowlines and the 
position of the fixed oints are related to the value 
of J,= J - 25 and 6Q/ F]. This is illustrated in fig.2 
where phzse p f 

P 
ane trajectories are sh;wn for a fixed 

~Q/IFI value and different J 1 values. 
Analogously to the one-dimensional case we are now 

interested in the minimum 6Q value in order to avoid 
unstable motion. The criterion for this is, that the 
beam representation (a circle in the linear cqek must 
lie entirely inside the stable region in the (x,y) 
phase plane. Since the separatrix is known, the maximum 
allowable 'beam-emittance' J 
coordinates of the unstable 2i~~mp~~~t~~)e~~~e~~~~ iz 
the one-dimensional case by eq.(21)) which is now a 
function of J 

Given the B 
and &Q/IF] (see eq.(30)). 

orizontal and vertical emittances a mini- 
mum value of ~Q/(F( can be given. The resulting ~Q/(F( 
;;;m;z f" a Jx= iEx/R, Jz= jEZ/R diagram are given in 

So given a certain machine ('xl E , R, F) the mini- 
mum &Q value can easily be determine% from this figure. 
An example is shown in fig.3 : a machine with' 
J = 22.10w7 and J = 7.8 IO-' should satisfy the 
c'dndition &Q/IF1 ?10.6 10m3 

2625 
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Fig.2 Trajectories in (2,;) 

P 
hase space. 6Q=O.O75 and 
FI=lO . The region inside the 

dashed circle (b,c,d) indicate 
the unphysical region (Jx<O). 

; 

Figure 3. 6Q/lF( curves in the J ,J diagram 
for the resonance 2Qx+Qz=ErN 

- x+2Qz Y,N Q : normal sextupoles. 
The study of this resonance goes in a same way as the 
previous resonance. The excitation term ig now 

mJx+Wz) 
(31) 

and furthermore 6Q = i(Qx+ 2Q,- p,N), Jl= J - 
x 15 

z 
Trajectories in (1,;) phase plane are given in figure 4. 

(a) 
Jl=10-7 

(b) 
Jl=-3. lo-* 

(cl 
Jl=-I.10-7 

Cd) 
J1=-1.35 1O-7 

Fig.4 (2,?) phase plane for PAMPUS for the resonance 
Qx+2QZ=prN ; &Q=O.O5 , IFl=40.1 s 

In the same way as done in the previous section we can 
calculate the minimum &Q/IF/ value for a given J ,J . 
The result is iven 
6~/1~/>1.1 lo- 5 .s 

in fig.5 : PAMPUS should sat&fyZ 
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Fig.5 &Q/IFlcurves as function of Jx,Jx;GQ=i(Qx+2Qs-p,N) 

Results of this phase-plane treatment are compared with 
results, obtained by using the theory of Guignard.' 
The minimum distance given by Guignard is strongly re- 
lated to the equation which holds for the fixed points 
and substituting J 2 f.p.=d~z/R (see also s) 

resonance IFI 6Q(our method) 6Q (Guignard) 

Qx+2Qz=8 0.14 0.00050 0.00039 
Qx+2Qz=16 40.1 0.044 0.034 

Table 1. &Q=i(Qxf2QZ-p,N) values for PAMPUS. ' 

2Q - 2Q = 0 : octupoles. -x-z 
Trajectories in ("x,;) phase- 

Pi!"% are given in fig.6 
for fixed values of Jl and F2 ; o and different values 
of &Q=i (*Qx-*Q,). , , 

Fig.6 (:,G) phase-plane with Jl=9.10-7,/F~2;-~) I=250 , , 

This resonance leads to a periodic exchange of energy 
between the two transverse planes. This exchange can be 
determinEd by using extreme values +I for cos 2$2 in f 
(eq.27) : a=J 2,minfJ2 max and 
a2 5 (I~QI +*jFIJIl, +‘(16QI -*iFIJI + , ) = o 

2lFlJ 2,max - 21FlJ (32) 
2,max 

The upper sign holds for 6Q>O, the lower sign for 6Q<O. 

Final remarks. 
The analytical expressions give a good behaviour of the 
lattice functions. Furthermore the description of non- 
linear resonances in a one-dimensional phase-space 
gives a very good insight in the influence of the 
exciting non-linear fields. 
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