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Summary .

Using Hamiltonformalism with action and angle vari-
ables, uncoupled and coupled orbit motion of particles
in a storage ring are presented. Analytical expressions
for the Twiss parameters, using Fourier components of
the guide field, are deduced from the linear Hamilton-
function. With these lattice functions, expressions
which represent influences of non-linearities are
given. The description of coupled motion is, after some
canonical transformations, reduced to a one-dimensional
problem. The motion is represented in a phase-plane,
which has already been done for AVF cyclotrons.

The theory will be applied on the Dutch proposed
synchrotron radiation source PAMPUS.

The results of the linear theory as given here are
compared with matrixcalculations. Results for non-
linear resonances are compared w1th results obtained
by using the theory of Guignard.®

Introduction.

The orbit motion in a storage ring is deduced from
a general Hamiltonian. *»%:® Interested in the Twiss
parameters we first consider the linear (radial) beta-
tronmotion, described by the Hamiltonian

-2 2 =2
= 4p, + $(7(8) - n(O))x (1
with the reduced variables x = x/R and p_= P /p H
€ = R/fp and n = -(Rz/B p) (3B,/0x), vhere*R i¥ the mean
radius and p the radlus of curvature. The azimuth 6 is

the independent variable.
It is convenient to use action and angle variables

J,y defined by
/iJ/Q cos(y-Q6) and p_= v2JQ sin(-Q8) 2)

where Q is the radial tune.
The new Hamiltonian now becomes

K(sz) = H(i,ﬁx) - QJ = eZJ + ng (3
where e, is the constant part and g, the oscillating
part. Tﬁls oscillating part can be removed by a trans-
formation generated by the function

G]( E’w,e) = ‘:WJ - jUz(‘l’,e)
7 ,10

(4)
In general we can set
Uz(w,e) =k§1a k(6)cos2k(lb—Q6) + b2k

The coefficients a,, and b, have to be determined by
the requirement of“vanishifig oscillating parts and
contain power ierLES of the Fouriercomponents of the
guide field (g%~ n);’ a,. and b2k have the same periodi-
sity as the guide field.

Furthermore we note the relation between the action

Variable J and the "emittance of a particle" e, ¢

= ésx/R ‘
Considering the common phase-space ellipse (x,dx/ds)
one can deduce the relations

(8)sin2k (Y—-Q6)
(5)

(6)

e v, =R/2J/Q(/]+BU2/3¢)w_Qe=0 (8)

With eq.(5) the lattice functions, expressed in Fourier
components of the guide field, are given by

-1

Bx = (R/Q)-(1+ Z(—l) 2kb2k) (9)
-1

Y = QR (¥ kgl 2kb, ) (10)
and furthermore ai = Bxyx— .
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The behaviour of the "analytical calculated betatron-
function for the PAMPUS lattice " is shown in figure 1.

Comparing this with the result of a matrixcode “ one
sees that there is a very good correspondence.
10—‘6x(m/rad)
5._.
matrixcalculations
® analytical cal. eq(9)
I O I 6 D
B QH Qv B Qi Qv
Figure 1. Behaviour of radial betatronfunction for

PAMPUS with Q=2.10

Non-linear uncoupled orbit motion.

Non-linear fields often give rise to resonances,
which may limit the stability region. Comsidering the
one-dimensional,radial, motion, the Hamiltonian becomes

-2 -2 - -
= 452 + 1 - wF ¢ hEELLe) (11)
x x
This Hamiltonian can be rewritten as:
= =2 2=2 =j=k
A= 152+ 40%% MO (12)

J»
where j and k are positive integers(j+k23); n=j+k is
the degree of the Hamiltonian. Furthermore the phase ¢
(d$=R/QBdB) is the independent variable and
%=vVB/R-x » p.=VR/B(p.~ ax) , where we omitted the
index at the 13ttice flinctions. We introduce action
and angle variables,

Y217Q cos ¢ , §x= /2Q1 sin ¥ with I=jQe /R (13)

The non resonant oscillating parts of nth degree in the
Hamiltonian can be removed, using a transformation,
generated by a function of the form ®

U W6

X =

6, (T,9,0) = - Ty - /2 (14)

The new Hamiltonian, containing resonant terms, now

b :
eeomes? () ilm J+p No) a/2

K(I,p) = QI + L% F e

m. P Py

(15)

The function F( )(¢) is the coefficient of a term of
n-th degree and argument mw ;m fa? take the values

m = *n, *(n-2),... agdlng F in a Fourierseries
delivers the quantlty F

The p_ harmonic of F(m)(¢) drives the resonances
m Q p. N ( note thal in the linear case dW/d¢
NTis th& per10d1c1ty of the non-linearity.

The ¢-dependence is now removed by a transformation

-Q ).

T=T1 and y=19 + (p/m IN$ (16)
which is generated by the function G3

G3(T,Y,0) = - W - (p /m IN¢T (17)
The Hamiltonian can now be written as ®©

-~ = = pr = (mr) = =n/2

K(I,y) = (Q-ﬁ; NI + 2|Fn’pr!cos(mrw + XF)I (18)
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are now both positive, and
m i

( r>|e Xg
n,p_

where and p,
m?m )
F I= (19)
nspr
The stability region can be predicted from the
invariant K{I,0). The criterion for the fixed points
(d1/d¢ = 0 , dP/d = 0 ) leads to the condition

=071 p (=)
I 2 - s(q- £ N)/(aF_ ) 20)
P r ’Pr
where T is the action variable I belonging to the

unstablé ' Pixed points. ]
A criterion for stability is that the bgam lies

entirely inside the stable region in the (I,¥) phase
plane. Representing the beam by a circle ( correct when
no non-linearities are present ) one gets the require-
ment &
If.p. 2 cn(Q/R)Ex

where ¢ is a constant depending on the form of the
stable ?egion and so depending on n : ¢,=2.0 and
¢, = 1.2 . Egs.(20) and (21) lead, for a given excita-
tion term, to a minimum distance to the resonance line.

We will illustrate this for the third degree reso-
nance 3Q=p N excited by sextupole fields. The minimum
distance if given by ©

P (3
lo - 5=l = ﬂF%pJ(magxﬂ

(21)

(22)

with F§3)=(/5724)(BS/ZQ]/ZRI/Z)(32Bz/8x2)/(Bop)

The sextupoles needed for chromaticity correction in
PAMPUS * (N=8) can for example excite the resonance
3Q=16 . For a particle with a 10 g-amplitude, the
minimum distance is |Q-16/3 | = 0.036 .

Furthermore we note the { and ¢ independent
Hamiltonian of eq.(15) for m =0 , pr=0 .
This condition can only occut for evVen degree n. In
this case there is a change of the tune, depending on
the amplitude. Considering the fourth degree Hamilton-
function the tune-shift is given by

©) =
bQ=2F 51 (23)

with F£0)= (3/16)RBY° + (]/16)83R(3332/3x3)/(B°p)

The first term gives rise to an inherent tume shift

and the second term is the contribution of octupole
fields. The needed octupole fields to provide a certain
tune shift(spread) can be determined. As an example

fgr PAMPYS at Q = 3.25 the octupole field should be

3 BZ/ 9x”) = 100 T/m3 in order to get a tune shift of

103 for a particle with a 10 o-amplitude.

Non—-linear coupled motion

Two transverse motions may be coupled in the
presence of non-linearities. We will consider here the
influences of sextupoles and octupoles and the
Hamiltonian of interest is

— -2 — — -
H = &pz + i(ez-n)x‘+ ipz + inz2 + I a, (8)xJzl
x z . il
- - - — J’l
%, z and p_, p, are relative variables according to
eq.(1).
The O-dependence in the linear Hamiltonian is removed
by a transformation, generated by the function (see
3

also °)

(24)

G, G 50,,0) = @728 )% (tanC, o, (O)-a} + )
+ ®%/28 )27 (tan(y +n_(8))-0 )
.
where Bx 2 is the betatronfunction , o EE(VdS )]

[}
. - '
and [ Qx,ze £(R/8X’Z)d6

The Hamiltonian can now be written as K(J_,Y_,J ,0_,0).
Keeping in this Hamiltonian only the non~fin§érz z
resonant terms and applying the moving-coordinate trans-
formation of the type as given in eq.(16), which is

now generated by the function G5 :

G5 (T s¥ysdpa¥,58) = =T\ U =y =(m,/m))J 0 ~Q J6 +

-t
(p N/m,)J,0 (26)
: m, prN
R R L A A A
The new Hamiltonian now becomes:® lmll m2[
(m ,m,) m -5
= 1°72 1 2 7
K = 6Q1, + 2[F T+ -4 J .
Q 2 l |m1|s|m2|:PrE( 1+ m2 2) JZ
@n
. cos(m2w2+XF)

with mZGQ =mQ + m,Q, - pN
F(m,.mz)

I, [, | b ]
degree |@ |+Tm2[ (degree |m,| in x and |m | inz ) and
P, the fourierComponent that drives the r&sonance.

As ¥, is not present in this Hamiltonian J = constant
and Ehe problem of describing the couplingsresonance is
reduced to a one-dimensional problem,for which it is
now convenient to present it in a phase-plane. The
fixed points are given by dJ,/d9 =0 and dy./d6=0 .

In the following sections we“will study seVeral reso-
nances with the add of phase-plane figures. From these
figures we can define a minimum 8Q value in order to
avoid unstable motion. These values will be compared
with results obtained by using the theory of Guignard.®

is the coefficient belonging to a term of

2Q + = N :
QrQ =p skew sextupoles.

This resonance can be(sx?éted by skew sextupole fields.
The excitation term F,“°'/ is ® .
(2 +y )

2,
Fgf;‘)=(/578>exs;’2<R§’2/Bop)(azsz/ax2>e N

(28)
The study of phase plane trajectories is somewhat
simplified by the traniformation
x = ¥2J,cos P, and y = ¥2J_sin wz - (29)

and the new Hamiltonign, is ca%led K.
The fixed points in (x,y) phase plane are now given by

N LY My
dx/d6= 8Qy + 2/2[F|xy = 0 (30)
dy/a6= ~/2| 7|3 -80% -3/3|F|¥ -/3|F|5% = o

where we omitted the subscripts at F2 ;

8Q =29 +Q ~pN. »12Py
1t folldws ffom eé.(30) that the flowlines and the
position of the fixed points are related to the value
of J=J ~ 2] and GQ/TF}. This is illustrated in fig.2
where phase plane trajectories are shown for a fixed
8Q/|F| value and different I values.®

Analogously to the one~dimensional case we are now
interested in the minimum 8Q value in order to avoid
unstable motion. The criterion for this is, that the
beam representation (a circle in the linear cage% must
lie entirely inside the stable region in the (x,y)
phase plane. Since the separatrix is known, the maximum
allowable 'beam~emittance' J b can be expressed in
coordinates of the unstable %ixgampoint(s) (as done in
the one-dimensional case by eq.(21)) which is now a
function of J, and 8Q/|F| (see eq.(30)).

Given the Aorizontal and vertical emittances a mini-
mum value of 6Q/|F| can be given. The resulting sq/ 17l
curves in a J = }€ /R, J = le€ /R diagram are given in

. x x z z
figure 3. :

So given a certain machine (ex, £ , R, F) the mini-

mum §Q value can easily be deternined from this figure,
. » » . . 8

An example_is shown in fig.3 : a machine with

J = 22,1077 and J = 7.8 1077 should satisfy the

cBndition 8Q/|F| F10.6 1073

and

2625



-6

]=—7.10

Fig.2 Trajectories in (;,;)
Thase space. 8Q=0.075 and

n
y

0 1.107 2.10° 3.10°

Figure 3. 8Q/|F| curves in the J J diagram
for the resonance 2Q + —p N

normal sextupoles.

+ 2Q = P N ¢
The study of thls resonance goes in a same way as the
previous resonance. The exc1tat10n term ig now

r D208 s xR 2s p) (22 B /3xP)e HrR)

b+ 2Q P N), Ji= 9 %J

and furthermore GQ

Trajectories in (x,y) phase plane are glven in flgure 4,

(a)
J =10—

(b)
I =-3. 100

(c)
JI—*I 10 7
F1g 4 (x,y) phase plane for PAMPUS for the resonance

(d)
J,==1.35 10

Q,*2Q,=p N 5 6Q=0.05 , |F|=40.1

In the same way as done in the previous section we can
calculate the minimum 6Q/|F| value for a given J J
The result is %fven in fig.5 : PAMPUS should satlsfy
8Q/|¥]>1.1 10”
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F[=10 . The region inside the
dashed circle (b,c,d) indicate
the unphysical region (JX<0).

3D

-7

—DJ

0 10~ 2.1077
Fig.5 8Q/|F|curves as function of J J ;8Q=1(Q +2Q 2 Py N)

Results of this phase-plane treatment are compared with
results, obtained by using the theory of Guignard.

The winimum distance given by Guignard is strongly re-

lated to the equation which holds for the fixed points

and substituting J —ie /R (see also %)

2 f.p
resonance | [F| [ 6Q(our method) 8Q . (Guignard)
Qx+2Qz=8 0.14 0.00050 0.00039
Qx+2Qz=l6 40.1 0.044 0.034 <J

Table 1. 6Q=§(Qx+2Qz-prN) values for PAMPUS, °

2Q - 2Q = 0 octqules.

TraJectorles in (x,y) phase—Y}ans)are given in fig.6
for fixed values of Jl and F and different values

of 5Q=%(2Qx'2Qz)-
—_—

~(a)

\6Q=2 510 -3

Fig.6 (x,y) phase~plane with J] =9.1077 [FZ 2,0 ] 250

This resonance leads to a periodic exchange of energy
between the two transverse planes. This exchange can be
determined by using extreme values *1 for cos 2w2 in K

(eq.27) & : o= I3 min /J2 max 204
o - |8l +2|F]J ([6Q| -2|F|J, Lyoo o
a” o+ o + + =
ZTFTJ2,max - 2“71‘12,ma1x

The upper sign holds for 8Q>0, the lower sign for &Q<0.

Final remarks.

The analytical expressions give a good behaviour of the
lattice functions. Furthermore the description of non-
linear resonances in a one-dimensional phase-~space
gives a very good insight in the influence of the
exciting non-linear fields.
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