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Abstract 

We consider a circular waveguide whose radius 
a(z) = a(l+cs(z)) varies periodically with :he axial 
coordinate z. Chatard-Moulin and Papiernik have 
introduced a perturbation expansion in powers of E for 
the longitudinal impedance of such a waveguide. We 
have reformulated the derivation of this expansion in 
a manner which elucidates the structure of the higher- 
order terms, and allows the determination of the 
dependence on E of the resonant frequencies. For a 
square-wave (SW) wall distortion, there are divergent 
coefficients in the perturbation expansion. Hence, a 
special treatment is required in this case, and we 
present a calculation of the resonant behavior for 
small E, using an approach which does not assume an 
expansion in powers of E. The resulting expression 
for the resonant impedance involves functions singular 
at s=O; however, to leading order in E, the loss- 
factors and resonant frequencies are in agreement with 
the perturbation theory of ref. 1. 

Derivation of the Perturbation Expansion 

Chatard-Moulin and Papiernik' have introduced a 
perturbation technique for the calculation of the 
electromagnetic fields generated by an electron beam 
moving along the axis of a circular waveguide, whose 
radius a(z) varies periodically with the axial coordi- 
nate z. The perturbation parameter E is introduced 
via 

a(Z) = S(l+ES(Z>), (1) 

s(z) = 2 C exp(2xipz/L), (2) 
P=-Lo P 

where a denotes the unperturbed radius, and the shape 
function s(z) = s(z+L) has period L. Applications of 
the method deveioped in ref. 
work of Krinsky 

1 can be sound in the 
and Cooper and Morton . Here, we 

reformulate the derivation of the perturbation expan- 
sion to elucidate the structure of the higher-order 
terms'. 

We begin by assuming an axial current density, 

.Jz=(I(~)/n~~)S(irr)exp(-iwr), -r=t-Z/V, (3) 

where cylindrical coordinates (r,$,z) are employed. 
The electron beam radius is denoted P, the phase 
velocity v, the laboratory time t and the step func- 
tion e(x) vanishes for x<O and is unity for x>O. The 
current density generates an azimuthal magnetic field, 
Hb(r,z)exp(-iwr), where H+(r,z+L) = H+(r,z) iy 
determined by the inhomogeneous wave equation 
( y-2=1-v2/c2): 

together with the boundary condition' at r = a(z): 

a!rH$) 
- = a'(z) 

ar 
+%(rH+) . 

I 
(5) 
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Here, a'(z) = da(z)/dz, and the partial derivative 
a/Bz is taken with r = t - z/v held fixed. The 
electric fields E, and E, can be calculated from 
Hy using the curl equations. 

For simplicity, we consider the limit Y+-, so 
that v = c and w/cY<<l. Then the general solution to 
Eq. (4) is 

I (l; r) 
H+(r,z)/I(w)=g(r) - w y BP hi CL p=-m 

2xipz/L,(6) 

p o\'p 

where g(r) = r/21rp2(r<p), and g(r) = 1/2rr (r>p), 

A 2 
(7) 

P 
= (2ap/L)2 + (2nplL)(2wlc), 

and &, is the modified Bessel function. In order to 
derive an infinite set of linear equations for the 
unknown coefficients BP, we substitute (6) into 
boundary condition' (5). It is useful to define 

Inp=(2xn/L)(w/c)+(2*p/L)(w/c)+(2rm/L)(2Tp/L), 

Dk(hp)G 7 dz exp(-2nikz/L)Io(Apa(z))/Io(Apa) 
0 

= 6 +A2 F (my) Em, 
ko p m=l B 

L 
Ek= k 1 dz exp(-2nikz/L) a'(z)/a(z> 

0 

m m Cd m =- (2nik/L) C m=I (-) C k E /m , 

the 

(8) 

(9) 

(9a) 

(10) 

(lOa) 

where Cm) 
% 

is the k-th Fourier coefficient of [s(z)lm, 

and 1:) is the m-th derivative of I . It now follows 
0 

that the coefficients BP are determined by: 

? BpDn-p(~~p)Pnp/A~ = - iLEn/2a (n=-m,...,m). (12) pm-co 

(13) 

For vanishing electron beam radius, P+O, the 
longitudinal impedance, Z(w), is related to the 
solution of Eq. (12) by 

Z(g) = iZoBo , 

where Z, = l/CEO. 

Using Eqs. (9a) (10a) and (12), a perturbation 
expansion is derived$: 

B ? ,(m) E.m 
P = &I p ' 

(15) ,(d= u(d+ ~~1 ; Cm’) ,(m-m’) 
P P m'=l p'=-m Gpp' pt ' 

with U(pra)= (-)"+'(p/m) Cr) and C~~=-Tpp,C~~,Q$). 

Now defining b(m) = U. (m) = 0, and for k>2 - ' 
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bbl ,...,d = 1 
pl,...,pk-l 

GA,: ‘(y$ . .G~;l;,-,(zi, 
k' 

(Lb) 
it is easily seen that 

B(m) = 1 0 (ml 
bbl,...,~) , (17) 

where the sum C(m) is over the 2m-1 sets of integers 

(2) = , with m. > 1 and Iin. = m. In particular, B. 

:,:il), and ;$ = b(2,1:+ b(1, 2) + b(l,l,l). 

The O(s2) contribution to the impedance is 

Z(w)/iZ = - 
0 (2nw/cL)p,%.,lc~Cp(2Qp, (18) 

where we have introduced Q z Q(l). The resonant 

frequenciesls3, therefore,PcorrEspond to the poles of 

Q,, i.e. Io(Apa) = 0. If at a given frequency 

z5, one has Q15 nearly infinite and dominating all 

other $(p$) , then in the neighborhood of w we 
might expect, 

Z(w)/iZoz (,~,u,(~)E~) /( Q~'-,&6,(8)Em) . (19) 

Comparing coefficients of (Qp)'cn (l(Kn-1) in Eqs. 

(17) and (19), one determines vm(p) and s,(p). 

Clearly, v,(F) is just the coefficient of Qg cm. TO 

write an expression for 6,(p), wz define 

Q/pb) = G$ and for k 2 2, 

Qp*ph , . . . ,mk)=b;; ‘G$ . . .G;;;;;kmlG~;p, (20) 

where the sum is over pl f P, ..., pkml # P. Then, we 
find 

6,(P) = E(m)Ap("l mk 1 * (21) 
I... , 

As wz have done before in Eq. (17), we use E(m) to 

denote the summation over the 2"'-l sets of integers 

bj 1 a with mj 1 1 and Cmj = m. To be explicit, 

me write S1(p) = Ap(l), A2(p) = Ap(2) + Ap(l.l), and 

63(p) = Ap(3) + Ap(2,1) + Ap(l,2) + Ap(l,l,l). Knowl- 

edge of 6,(p) determines the variation of the reso- 
nant frequencies with E, as long as Eq. (19) is a 
valid approximation, that is, until the resonant fre- 
quency corresponding to some p f F becomes degenerate 
with that corresponding to is. 

Square Wave Wall Distortion 

Let us now consider the square wave (SW) 
perturbation of the wall studied by Keil and Eotter. 5 

We take the shape function s(z) equal to unity for 
o<z<g, and to zero for g<z<L. Its Fourier 
coefficient, 

Csw 
P 

= (2rip)-'[exp (2nipg/L)-1] (22) 

falls off slowly at large p, resulting in the 
divergence of the coefficients in the perturbation 
expansion (14). This divergence indicates that the 
impedance considered as a function E is singular at 
the origin for the SW perturbation. 

In order to make sense of the perturbation 
expansion, it is necessary to introduce a large p 
cutoff P,,,~~ and to perform a partial summation 
including leading terms in pmax for all orders of 

After completing the summation, p,,,ax is allowed 
:b go to infinity and a finite result is obtained. 
This procedure has been applied in ref. 4 to treat the 
low frequency limit of Z(W)/W. For a narrow cavity 
with g<<L, g<<aa, s<<l, the well-known linear behavior 
Z(W)/W * - iZ,gc/2nc was obtained. For a cavity 
with g/L of order unity, examination of the 
higher-?rdeLr terms indicated2that Z(w)/tu = 
(-iZ,ac /n c) Iln(L/ac) + O(c ). 

Here we shall present a more direct treatment6 of 
the SW distortion, focussing our attention on the 
resonant behavior at high frequencies. Our objective 
shall be to make contact with the perturbation theory 
results of Eqs. (19 -21). In the "tube region" 
(0 < z < L, r < a) we express the EM-fields in terms 
of ToefTicients BP using Eq. (6). In the "cavity 
region" (0 5 z < g, a < r 5 b : a(l+s)), the fields - - 
are written in terms of coefficients 8,, 

The functions fn(z) = (2/g+ cos(nxs/g), n 1. 1, and 

fo(z) = (l/g)% are orthonormal on 0 5 z 5 g. We 
have defined, 

e2 
2 2 

= (nn/g) - (w/c) , (24) 
n ( 

and Tk(dnr)=(-)kKk(*nri- ) Ik(Jlnr)Ko(~nb)/Io(~nb), for 
k = 0, 1. 

The relation between BP and 8, follows from 

continuity of Es along (0 5 z 5 g, r = a): 

B (25) 
P 

= (-c/u) ,I, 0, R 
np ' 

where 

R = $ dz fn(z)exp (-fox/c - 2nipzlL) . (26) 
"P 0 

Continuity of H,+, results in an equation determining 
ti ns 

Si18m-(aL) 
-1 

,=~-QpR~p ngo BnRnp=(2ra)-1R~o , (27) 

with S, = $,a T,($,,a)/Tl($,,a). Once 0, 
is known, the impedance is calculated from Eqs. (13) 
and (25). The relation of Eq. (27) to a variational 
principle for the impedance will be discussed in the 
Appendix. 

As in the analysis leading to Eq. (19), let us 
suppose that at a frequency W, a single $ is much 
larger than all other Q, (pfp). Then neglecting all 
pfjj in the summation over p in Eq. (27), we are left 
with a separable equation, which is easily solved, 
yielding 

Z(W) -c/w -=- 
izO 

2na 1 . (28) 
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The summations in Eq. (28) define functions of E sin- 
gular at the origin. To see that the sums are conver- 
gent, note that for fixed c, and $,.,a~, one has S, 
= - $, tanh ($-,a~), and that for large n, Rnp 
decreases quadratically. 

From Eq. (28), % can see that the perturbation 
expansion of Eqs. (14-21) corresponds to an invalid 
interchange of the order of the summation over powers 
of c, and the summation over n. Expanding Sn (for n 
fixed) in powers of s, the coefficients of all the 
higher-order terms are divergent. However, the 
lowest-order terms in the numerator and denominator 
are finite and in agreement with perturbation theory. 
To see this, 
S n 

= - lQ2aE, 
note that for fixed n, and E+O, one has 
and use: 

n 

,z, ( Rno RX np 
= 2x(wlc)pc~ , 

,,I, $ lRnp I' = gh; 9 

(29) 

(30) 

where CT was defined in Eq. (22) and Ai in Eq. (7). 

At the present time, we have not accomplished the 
full asymptotic analysis for c+o of the sums appearing 
in Eq. (28). We do believe, however, that the proper 
treatment of the large n portion of the summations 
will not change the leading terms just presented, 
which agreed with perturbation theory. An indication 
of the nature of the singularity at E=O is obtained by 
using the approximation S n =Il;ltanh(+nac) for large n, 

and converting the summation to an integral. In this 
manner one finds the singular term s2sgn(~). 

Sinusoidal Wall Distortion 

For a sinusoidal wall distortion, corresponding 
to a shape function s(z) = cos (2x2/L), the coeffi- 
cients of all powers of s in the perturbation expan- 
sion (14) are finite. By iterating the recursion re- 
lations (15) on the computer, us have numerically 
evaluated the coefficients in the expansion of Z(UJ)/U 
in the low frequency limit. Depending on the value of 
the ratio a/L, we have obtained between 20 and 30 co- 
efficients, before encountering a loss of precision. 
These numerical results indicate that E=O is a regular 
point, and that the singularities nearest to the 
origin, determining the radius of convergence, are 
located at 

(Znac/L) 
2 

= - 1 . (31) 

Pade' approximants7 have been used to analytically 
continue the perturbation expansion into the entire 
interval 0 < c < 1. In Fig. 1, we plot the ratio of - 
the [lO/lO] Pad;' approximant to the result of second- 
order perturbation theory. 
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Appendix - Variational Principle 

Define 

B(z) = exp(-ius/c) ,i, 8,fn(s) , 

then Eq. (27) is equivalent to the integral equation 

dz' K(z,z') a(~') = (2*a)-1 , (0(x(g) C.42) 
0 

with the Hermitean kernel 

K(z,z') = exp(-iti(a-z wcln~o Silfn(z) f,(z') 

-(aJJ-lpzL Qpexp 

From Eqs. (25) and (131, the impedance is given by 

(a) 

[2%(x-z')/L) . 

g 
Z(W)/iZ 

0 
= - (c/w> j dz a(z) . 

0 

Now using the integral equation (A2), wa can rewrite 
this as 

Z(w)/iZ 
0 

= - $ x-l , (A.5) 

with 

$7 dz da' S*(z)K(a,z') ii 
X= 0 0 

g 
(Ah) 

j 3*(z) dz 7 d(z') da' 
0 0 

The original integral equation (A2) is equivalent to 
the variational condition dX = 0, when d(z) and n*(z) 
are varied independently. Hence, if one has an 
approximate solution to the integral equation, the 
error in the impedance is quadratic in the deviation 
of d(z) from the exact solution. 

Z/3 

' ! 

2 i 

Figure 1. Ratio of the [lo/lo] Pade' approximant for 
Z(w)/0 (e~+o) to the second-order result, 
for Zxa/L = 2/3, 1, 2, and 3. 
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