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The motion of a charged particle in an electric 
and magnetic fiel$ may be studied through the beha- 
vior of a vector Ad, analogous to the change in angu- 
lar momentum, over the particle history. Orbit pro- 
perties and limits of particle motion may be evalua- 
ted. This paper displays the analysis and applies it 
to a particle in a cylindrically symmetric magnetic 
field. 

Introduction 

The properties of orbits in circular accelera- 
tors have been examined by various means. The ear- 
liest work found that the maximum energy was limited 
by particle focusing requirements and shortly there- 
after the role of betatron oscillations was recog- 
nized. Over the years the understanding of the me- 
chanisms for spatial and energy focusing and the re- 
lation between them has been advanced and many 
clever schemes for accelerating particles to very 
high energies have been proposed and successfully de- 
monstrated. 

The Lorentz equation for the force on a charged 
particle in electrical and magnetic fields is a 
common foundation for nearly all studies, as it is 
in this work. 

First Integral of the Lorentz Equation 

The first integral of the Lorentz equation is 
found by the vector analysis familiar in the demon- 
stration of Kepler's laws of planetary motion in a 
central force field. However the Lorentz force is 
not a central force and the conservation properties 
of central force systems do not pertain. Thus, we 
find that the angular momentum, which is conserved 
in a central force field, depends upon the history of 
the particle motion in the electric and magnetic 
fields. It is the examination of the change in the 
vector formed by the vector product of the radius 
vector and the velocity vector between endpoints 
that reveals the dependence of particle motion on the 
electric and magnetic fields. 

The Lorentz force 

s(T) = q (z(:) + &i!(;)) = Myd2:/dt2 (1) 

governs the motion of a particle with velocity f and 

charge q with a relat vistic mass My = M(l-v 
$- 

2 2% 
in an electric field (r) 

/c+)+ 
and a magnetic field B(r). 

The first integral of equation (1) is found by form- 
ing the vector product r x ?(?) and using the vector 
identity shown below. The equation becomes 

My?x%(;) = M$xd2r/dt2 = q 

(;xE(:) + qx (dr/dt) x if(:) ). (2) 

A change of variable from time to displacement 
along the orbit path s is made by using d/dt = 
(ds/dt)(d/ds) = v d/ds and writing p = Myv where v 

and p are scalar magnitudes of the particle speed and 
linear momentum. After rearrangement and noting that 

(d/ds) (: x d:/ds) = ; x d2;/ds2, we have 

(d/ds) (": x d:/ds) = q[(? x z(;)>/p(s)v(s) + (l/p(s)) 

(; x d:/ds x s(:))] (3) 

In writing p(s) and v(s) we are indicating that the 
magnitude of these scalars are also path dependent 
when an electrical field is present. 

Next we use the vector identity 
(I.d,if t 

x2x = (;5.@L 
o restate the last term on the right in equa- 

tion (3). Equatinn (3) may be integrated along the 
orbit path s from endpoint a to endpoint b to give 

1 

b 
; x d:/ds = q i", [(? x z(:))/p(s)v(s)] ds 

a 
(4) 

+q &(1/p(s)) (;-8(s) d;/ds - (: d;/ds) rf(':)]ds. 

Orbits in Axially Symmetric Magnetic Fields - 

We first consider orbits of particles moving in 
magnetic fields with no electrical field acting upon 
them. We set E(r) = 0 and take p(s) = p outside the 
integral. We adopt a cylindrical coordinate frame 
and examine the orbit properties which are those of 
orbits in a conventional cyclotron. This enables the 
details of the method to be displayed and the results 
compared to well known orbit properties. 

The left hand side gf equaiion 14) is the differ- 
ence between the vector d(s) = r x dr/ds evaluated at 
the endpoint b and the endpoint a. We define 

Ad = d(b) - h(a). (5) 

The compon nt 
% 

equations for each of the three compo- 
nents of A from equation (4) with E(r) = 0 are 

b 
Adp = -Zod@/ds a 

= (q/p)$Z Ba dp/ds - BoZ dZ/ds]ds 

I 

b 
dQ = (2 dp/ds - pdZ/ds) 

a 
= (qlp)l; [02Bp d0/ds +@) 

ZpBs da/ds] ds (7) 

- /;[(pdp/ds + 7. dZ/ds) BO] ds 
b 

Ad z = 02dQ/ds a = (q/p) $pBpdZ/ds - BZ 

pdp/ds 1 ds (8) 

The quantity dQ/ds may be found from the metric in 

in cylindrical coordinates, ds 2 = dp 2 + c2dQ2 + dZ2, 

and is 
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dQ/ds = (l/p) [l - (dp/ds)2 - (dZ/ds)2 1% (9) 

The above equations are simplified when the mag- 
netic field is restricted to one without asimuthal 
variations, B = 0, corresponding to a convential cy- 
clotron. We !t xamine particle motion in the midplane 
of the axially symmetric magnetic field with the 
further simplification that the axial motion is zero, 
z = 0. Under these two restrictions the component 
equations become 

Adp = 0, 

Ad =O 
0 

and 

Adz = ~(1 - (dpjds)2 )+ 

The radial motion in the 

(10) 
I 
b 

= -(q/p) /", BZ pdp. 
a 

midplane is conveni- 
ently described as the departure from a closed cir- 
cular orbit, called the reference orbit, of radius R. 
Thus we write 

o=R+X. (11) 

1n the simplist approximation the departure from the 
reference orbit is a sinusoid so we set X = X0 sin 
KS and we have 

p = R + Xo sin KS. (lla) 

Along the reference orbit concentric with the 
center of the cyclotron and on the midplane the cen- 
tripetal and magnetic forces are equal, thus 

Myv2/ R = q Bov (12) 

which yields 

l/R = q BoiP. (124 

B. is the magnetic induction Bs at the radius R and on 

the midplane, and p = Myv is the particle momentum. 

A usual description of the magnetic field in a 
conventional cyclotron in the neighborhood of a closed 
orbit is 

BZ(r) = Bo(p/R)-n . (13) 

The magnetic field index n, defined by equation (13), 
measures the rate of magnetic field fall off with 
radius. 

n = - (R/Bo)(dB/dr) r=R. (14) 

Radial Oscillation Frequency 

The frequency of the radial oscillations about 
the reference orbit can be found by using equations 
(lo), (lla) and (13) and simple endpoints for motion 
in the midplane. We chose the path origin, s = a = 0, 
as the lower endpoint which yields p(a) = p(0) * R. 
The origin is the point at which the particle is 
crossing the closed reference orbit. The other end- 
point b is chosen to allow KS = Kb = s/2 which is the 
point of maximum departure from the reference orbit. 
With these endpoints equation (10) becomes 

b Ad z = p(l-(dp/ds)2)4 
I 

= -(q/p) fb, (p/R)--pdp 
a 

5 (1/(2-n)R1-n)p2-n 
b 

a (15) 

where we have used equation (12) and the fact that for 
positively charged particles B is directed along the 
negative z-axis to have closedsorbits. This disposes 
of the negative sign in equation (15). 

The evaluation of both sides of equation (15) is 
done by expanding p and dp/ds with the appropriate bi- 
nomial series. When the endpoints are applied we 
have 

R [I - (KXo)2/2 - (KXo)4/8 - . . : - (R + X0) 1 

(16) 

- xo - (l-n)Xz/2R + n(l-n)Xi/6R2 + . . 

This is solved as a quadratic in K2 to yield 

K2 = [(I-n)/R2J[1-(n/3)(X0/R) - ((1-n)/8)(Xo/R)2 

+ 1. . . (17) 

We write K = k/R in accord with the dimensions of KS 
where k is a dimensionless parameter. The lowest or- 
der term in equation (17) shows 

k = (l-n) 
4 

which is the well known first order radial oscillation 
frequency term in a convential cyclotron. The radial 
oscillation frequency depends upon oscillation amplf- 
tude as shown by equation (17). 

Orbits in a Flat Magnetic Field 

The motion of charged particles in a uniform 
magnetic field, field index n = 0, is resoLved into a 
linear component of velocity along the field lines 
and a circular orbit around the field lines. This ex- 
ample il&ustrates the significance of radial compo- 
nent of Ad. 

For a flat field Bs = B. and with the condition 

that dZ/ds = constant # 0 we have from equation ( 8) 

Ads = p[l -(dp/ds)2 - (dZ/ds)2]Ji 
! 

b 
= -(q/p) !; 

a 

B,pdp (18) 

= [l - (dZ/ds)2]'1 [I - (ap/ds12/(1 -(dZ/ds)‘jl: 

Now when we use p = R + X0 sin 
9 9 

KS and evaluate K as 

above we find that K- = l/R' or k = 1 indicating that 
there is no precession and no restoring force for any 
initial orbit orientation. However in obtaining this 
result it is necessary to note that qB fp is not sim- 
ply l/R because the momentum p has a &ponent in the 
axial direction. The relation we use qBo/p = (1 - 

(dZ/ds)*)'/R comes from the resolution of the momentum 
into an axial and a radial component. 

By choosing the z-axis to be the guiding center, 
the center of t e circular orbit of radius R, the ra- 
dial component i d given by equation ( 6) may be eval- 
uated. We use X0 = 0 and find 
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AaP 

2% b = -2 [l - (dZ/ds) I = -We/p) Z 
a 

J-L pdp (19) 

which is used with endpoints on the z-axis Z(a) and 
Z(b) to get 

Ado = [- Z(b) + Z(a)] [l - (dZ/ds)21' (19d 

As shown in Figure 1 the radial component of 

dd =: x d;/ds ", grows linearly as Z(b) - Z(a) in- 

creases. The vector component Adp is opposite in di- 
rection to the unit radial vector. 

Zfa) 

Figure 1 Particle Motion in a Flat Magnetic Field 

General Properties of Component Equations 

Equations (6), (7) and (8) may be seen with the 
aid of the two examples as the key for understanding 
orbit excursions in axially symmetric magnetic field. 
Adp. equation (6) measures the axial departure from 
the midplane. The limits set by dee aperatures or 
other restrictions on axial motion may be related to 
the magnitude of Ado. The suitability of initial am- 
plitudes of axial and radial motions and the magnetic 
field parameters may be determined. 

Adz, equation (S), is the difference between two 

rather large terms each approximately R in magnitude. 
The comparison of equations (6) and (8) for Adp and 
*d , respectively, reveals the synrmetry between radial 
an3 axial motions. 

Ad p, equation (7), emphasizes the coupling between 
radial and axial oscillations. The last term in equa- 
tion (7) has the nature of a driving force arising from 
azimuthal variations in the magnetic field and provides 
a means of evaluating the effects of magnetic asymmetry. 

Contribution of an Electric Field 

The use of this analysis with an electric field is 
complicated by the dependence of both p(s) and v(s) 
upon the change in particle energy along the path. 
This is recognized in equation (4) where p(s) nd v(s) 
are within the integral. The contribution to -f d by the 
electric field may be seen in the component equations 
for thg portion of equation (4) containing the electric 
field E(r). These are 

AdZ = q rb, [(pE?)lp(s)v(s)l ds. (22) 

When the accelerating field is applied over a 
limited portion of the path corresponding to a dee 
gap crossing the contribution of the electric field 
may be evaluated as a step change. This is a very 
useful and frequently valid simplification. If this 
is done then the new magnitudes of p(s) and v(s) are 
considered as a new scaling for the next portion of 
the orbit. 

Conclusion 

The vector Id from the first integral of the 
Lorentz equation may 
tionally) studied to 
arising from primary 
the particle moves. 

be analytically (2nd computa- 
evaluate orbit properties 
and perturbative fields in which 

Ado = -4 fb, [(Z R$/p(s)v(s)l ds 

*db = q f: [(Z E--pR_)/p(s)v(s)l ds (21) 
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