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TURBULENT BLNCH LENGTHENING AND 'IHE MICROWAVE INSTABILITY 

B. titter, CERN, 1211 Geneva, Switzerland. 

Sumnary 

Including negative mcde numbers in the analysis 
of bunched beam oscillations results in a quadratic 
equation for the coherent frequency shift. This leads 
to canplex solutions above a threshold, an3 hence to 
instability. Bunch lengthening occurs in order to re-- 
establish equiiibrium. 

Introduction 

In most high energy particle accelerators or sto- 
rage rings one observes an increase of the bunch length 
with increasing current. Ebr low currents, this bmch 
leqtheniq can be explained by the deformation of the 
potential well dw to space charge in an essentially 
inductive environment. mwever, above a certain thres- 
hold, the rate of blnch lengthening increases and is 
accompanied by an increase of the bunch width (energy 
spread) which cannot be caused by a conservative Ipten- 
tial. This behaviour has been explained tentatively by 
the onset of longitudinal oscillations at very high 
frequencies, which are often called "microwave insta- 
bil ity". When the bunches oscillate in many modes and 
their signals become fluctuating, the phenomenon is 
called "turbulence" in analogy to the flow of fluids. 

In spite of this qualitative understanding [1,2] 
and an appreciable number of attempts to explain this 
behaviour quantitatively [3-51 there still exists no 
fully satisfactory theory which can predict thresholds 
and bunch lewths for a given wall impedance. ‘Ihe best 
results for long bmches are obtained by using the coas- 
tirq bemn criterion with local values of beam current 
and energy spread [6] an3 using a low-Q resonant imp+ 
dance adapted to the (measured) low frequency irduc- 
tance. Ebr shorter bmches, a "scaling model" [7] can 
be used which predicts bunch lengths for an impedance 
wnich follows a particular per law. 

The very successful theory of coupled bunch oscil- 
lations [8] does not predict instabilities of the single 
bunch - except for the mbinson instability, which can 
be easily cured by proper tuning. If coupling of diffe- 
rent bunch shaps modes is included [9] one can indeed 
obtain a stability criterion which agrees with the local 
coastirq beam criterion over a certain range, but it re- 
quires the presence of a single, strong resonant imp+ 
dance at very high frequencies (often above cut-off of 
the vacuum pipe) which appears unlikely to exist in all 
accelerators. 

By including negative mode numbers for the bllnch 
shape oscillations - or rather by not excluding them, 
as they are naturally present in the Fourier spectrum 
of a coherently oscillatiw bunch - this situation chan- 
ges drastically. Mathematically, the expression for the 
shift of the synchrotron frequency then becomes quadra- 
tic rather than linear, and leads to complex solutions 
(instability) above a certain threshold. Physically, 
this may be interpreted as a coupling of bunch shape 
oscillations with a positive mode number to those with 
the same, but negative m&e number, and it leads to 
a ccanplete loss of focusing of the coherent motion. The 
bunch will then lengthen and widen incoherently until 
focusing is re-established, thereby 1eadirrJ to turbulent 
signals tiich persevere in electron machines, tiere 

a dynamical equilibria between radiation damping and 
the blow-up forces is established. 

'Ihe impedance required to drive this mechanism 
is at much lower frequencies, and in particular could 
be the fundanental RF cavity resonance which explains 
its presence in all bunched beam machines. The very 
large frequency shifts predicted by this model may be 
unobservable because of Landau damping by the frequency 
spread in the bunches. 

Coherent bunch oscillations 

The signal induced at position 0 by a particle 
with charge e circulating in a storage ring with re- 
volution frequency w. is given by a superposition of 
delta functions m 

s(t3,t) = e c 6(t-T- & - %) 
k=-m 

(1) 

where T is the time delay of the particle with reference 
to the synchronous one. In the absence of perturbation, 
it is given by the synchrotron motion 

T=? . cos (mst+$o) (2) 

where ws is the synchrotron frequency, ? the oscillation 
amplitude and $0 the initial phase angle. 'Ihe signal can 
be Fburier analyzed [lo] and one obtains 

m 
Woe 

s(R,t) = j;;- ~Jm(p~o~)~~~p[j(i$pt-pB+m(~o- :))](3) 
m.P 

where the spectral frequencies are given by 

%P = pw, + nliLs (4) 

We emphasize that both sumnation it-dices m ard p run 
from -m to + -, an3 negative values of m are just as 
valid as positive ones. 

If w sm this signal over all particles with the 
same amplitude, it will in general average to zero un- 
less the initial pases $ok differ by a multiple of 
&/m. cklly then the terms exp(jm$$,k) will add in phase 
and give a coherent signal. We also integrate over all 
amplitudes takiq into account the distribution p(T) 
to get for the signal of a bunch oscillating at the 
m-th mode ‘max 

* IJ- .Jm(pw,r)p (r)dr 

0 (5) 

where Ib is the bunch current. For negative values of 
the mode number m, we can use the relation 

J-,(x) = ;'lrrn J,(x) (6) 

to obtain the same expression with time replaced by 
wern, p W0) . 

The signal strength at the negative satellite frequen- 
cies w-~,~ = p%-mw, is thus exactly the same as at 
the positive satellites, but the impedances will in 
general be different. 
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Coherent frequency shift 

For vanishing beam current, the frequency +,, of 
the m-th coherent oscillation mode of a bunch is just 
m times the (incoherent) synchrotron frequency of the 
single particles. For larger currents, the coherent 
frequency changes. For a parabolic bmch, the coherent 
frequencies can be found fran the zeros of an infinite 
determinant 

I 
ll!q) - mws - Mmkl =o (7) 

where the matrix elements Mmk are given by 

Ib z m,k 

0 
(8) 

II B3hVcosJls * eff 

Here It, is the current per bunch, B = DPT /2n the bunch- 
ing factor (T - full brnch length in time), h the harmo- 
nic number, v the voltage seen by the beam, GS the stable 
phase angle (cos$, < 0 &We +XTaIEitiOn), and the effeC- 
tive impedance is-defined by 

where 

are the (cross) 

h&(P) = &(%p) ik(%p) (10) 

Dower densities of the oscillation modes 
with line densrties A,(t), resp. their Fourier trans- 
forms 1, (0) . 

0 

z m,k _ $h’knP)$,~(P)/p 
(9) n eff 

Turbulent blnch lengthening 

In Fq. (8) , the voltage seen by the beam is the 
applied voltage VRF reduced by the potential well de- 
formation due to space charqe. This can be expressed 
by 191 

2 

where us0 is the synchrotron frequency for 
current. We define for short the parameter 

Cm = j 32 *b Z m,m 
- 

.4 0 Bo3h Vcos$, ' eff 

(16) 

vanishing 

(17) 

where BP = L,/2nR & natural bunch length). C&z can 
generalize the expression for the incoherent tune shift 
[13] by replacing IZ/nl with the effective impedance for 
the stationary distribution m = 0.* With x = &/lo one 
finds then 

= 1 - co/x3 (18) 

&low the onset of turbulence, ws/wsO is related to the 
2r % bunch lengthening x by 

wS -K ----EX (1% 
%O 

where k = 1 for electrons and K = 2 for protons. We can 
rewrite n;J. (13) as 

The radial mode nmnber q = Irnl + 211, Q = 0,1!2.. 
expresses the fact that there is an infinity of higher 
radial modes for each value of m. H3waver, the lowast 
radial mode with q = Irn1 has always the strongest ex- 
citation. 

If We neglect mode co@ ing (M,,m = 0 except for 
m = k), the matrix in eq. (7) becomes diagonal, an3 we 
simply get 

w, = mws + Mmm (11) 

If wa include negative made numbers, however, the mat- 
rix becomes bi-diagonal and wa find (m > 0) 

I 
w+mw,-M- m,-m M 

-m,+m 

I 

= 0 (12) 
M -In,-In w-mm-- -?NTl 

Since !$,,k hz,"_ 
that M-m,m 

fyto_r$ but,not k (see eq. 8), we see 
- m, m m wnlle h,-m = Mmm and hence 

we obtain the quadratic equation for wm 

f$ = m2wz + 2mwsMmm (13) 

For @run/ << mwsr we obtain approximately eq. (11) , 
i.e. the coherent frequency shift Aq, = q,-mw, is given 
by the matrix element Mmm. Bowever, the quadratic exp- 
ression yields r . -l 

ld 
~%nl 

*+n = mws 1+--l 
1 

(14) 
mws 

W see now that even a purely reactive effective impe- 
dance (real Mm& can lead to an imaginary frequency 
shift, ard hence instability, if 

mwS Re X,, < - 2 (15) 

9-e negative sign shows that the effective impedance 
must be capacitive, such as is always the case e.g. 
for the fundamental RF cavities since the bunches must 
be shorter than the RF wavelength, and hence sample 
predominantly the capacitive region above resonance. 

(ZT =l-$[,o-*cm] (20) 

For the lowest dipole mode m=q=l, this becomes simply 

p-)‘; 1 - ;t-s pl] (21) 

For long bunches the effective impedance, and hence Cm, 
become independent of the mode number m [12] and wa find 
w1 = wso, i.e. the dipole frequency equals the synchro- 
tron frequency for zero current. 

For short bunches (canpared to the resonant wave- 
length) the effective impedance of a resonator with 
shunt impedance R,, quality factor Q and resonant fre- 
quency wr is approximated by [12] 

(22) 

It is inductive for m=0 and capacitive for m>l. Hance 
Co-C, > 0 above transition, and w1 < ws < us,. The low- 
est dipole frequency becomes imaginary when C,,-C, > x3, 
and an instability will occur. The threshold is given 
by 

m=q=l 
I 

hV&-cosis)B3 

thresh = 32 ---#I;: _ ctx;+j (23) 

Since for short bunches C, = -Cc (see 4. 22), wa find 
at the threshold ws = ws,/J2 and V = VRP/2. lhe corres- 
poti& potential well bunch lengtheniq is found from 
EQ. 19, and is 0 for electrons and ,44Ji- for protons. 

*An improved version uses the m=l mode. 

2603 



In particular, one impedance for which the bunches are 
always shorter than the resonant wave length is the 
fundamental of the RF cavities. 'Ihen wr/cO = h and 

I 
m=q=l = II_ 2 VRFcOs$ 

thresh 16 Q/Q 
sa (24) 

for very short bunches. Fbr longer bunches, the diffe- 
rence between the effective impedances with m0 and m=l 
becomes independent of bunch-length, and the threshold 
current proportional to B3. In addition to the funda- 
mental RF resonance, a large number of resonances due 
to vcxuum chamber cross-section variations and higher 
modes in the RF cavities are often described by a broad 
band impedance which peaks at the vacuum chamber cut- 
off frequency. Such an impedance would cause a thres- 
hold only if the bunch frequency were higher than the 
cut-off frequency. Bowever, at high frequencies, the 
real part of the impedance decreases slower than that 
of a broad band resonator, and the capacitive part is 
thereby enhanced. %is can lead to a threshold even 
when the bunch frequency is lower than the cut-off 
frequency of the vacuum chamber. 

For Hermitian or sinusoidal modes, the infinite 
series for the effective impedance of a resonator can 
be sumned analytically [12] and the exact expression 
for the threshold - although still complicated - is 
readily evaluated by ccrnputer. 

Above the threshold, the bunch must blow up until 
equilibria is re-established. Since the coherent mode 
frequency is reduced to zero, focusing of that mode is 
canpletely lost. The bunch will both lewthen and widen, 
giving rise to a large number of higher mode signals 
known as turbulence. Ebr electrons, a dynamic equilib 
rium with radiation damping will cause continuous acti- 
vity. For protons, there will be an overshoot if the 
'hreshold is exceeded suddenly - e.g. by injection into 
a different machine - while the bunch should stay at 
the limit of stability if the parameters are changed 
adiabatically. 

Ihe equilibrium brnch length will no longer be 
given by Eg. (19) but by the condition % = 0 or 

where 

(25) 

2nI 
b 

C%I b c=-p-"- 
hVcos$, v,; E/e 

is tine "scaling parameter" introduced in ref. 7. Since 
tne effective impedance is a function of bunch length, 
Eq. (25) is a transcendental equation. Ihe numerical 
solution yields the bunch lengthening L/L, shown in 
Fig. 1 for a particular set of parameters (LEP), as 
well as the incoherent and coherent synchrotron fre- 
quencies ws/wsO and ~l/w,, which are obtained from 
Fqs. (18) and (20). Ihe coherent frequency shift is 
very large, which appears to contradict observation. 
Bowever, since the coherent frequencies are shifted 
below the incoherent frequency of the beam center 
they are in the region of the incoherent frequencies 
of particles with finite synchrotron amplitude. We ex- 
pect therefore that Iandau damping should make their 
observation difficult [14]. Qt the other hand, the 
rigid dipole oscillation - which shifts the potential 
well without deformation - is actually not included 
in this analysis. If excited by an external modulation, 
tne bunch will thus show no frequency shift, resp. a 
very small one due to the non-linearities of the RF 
potential. 
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Fig. 1 Effect of the fundamental resonance of the RF 
cavities on bunch length and synchrotron 
frequent ies. p = (16/n5)(S/B$Ib 

Conclusions 

W present an analysis of single-bunch oscilla- 
tions which leads to instability above a certain thres- 
hold current. It is essentially caused by the coupling 
of positive and negative mode numbers of the sane bunch- 
shape oscillation. It can be driven by resonant impe- 
dances such as the fundamental mode of the RF cavities 
or the broad band impedance dua to a larger nrmrber of 
resonances in the RF cavities and the vacuum chamber. 
Ihese exist in every storage ring or accelerator, and 
no unphysical impedances are thus required to provide 
coupling. 
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