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Summary 

It is shown that, of all nonlinear coupled reso- 
nances of the form m Vl+n ~2 = k where m, n and k are 
positive integers and m + n 5 3, those with m or n = 1 
exhibit a different property compared to others in 
their stable regions of phase space. The difference 
explains the paradoxical result obtained by Sturrockl 
and Guignard2 that there are points of arbitrarily small 
amplitudes which lie outside the stable region. 

I. 

Consider a coupled resonance of the form 

(2p)v1 + (2q)v2 = n + E (1) 

where (2p), (2q) and n are positive integers. It is 
further assumed that p ,< q so that p = l/2, 1, 3/Z,... 
and q = 1, 3/2, 2,... . In the tune diagram, it is 
convenient to define the point on the resonarce line 
that is nearest to the point (Vl, U,). 

(2P)VlC + (2q)v20 = n, (2) 

v1 =VlO+El, v2=v20 + E2' (3) 

e1 = E(2P)/[(2P>2+@l>21, E2 = El (q/P) (4) 

The distance from the point (Vl,U2) to the resonance 
line is 

A E [Ed + ~~1~'~ 
12 = jeI/I(2P)2+(2q)211'2 . (5) 

When one retains only the resonance-deriving term, the 
Hamiltonian in terms of the action-angle variables 
(1, a) can be written in the Eonn 

H = (9 (2X1) + k2/2)(212) 

+ D~cos($')(211)p(212)q (6) 

where 4 = (2~) al + (2q) a2 + 6. (7) 

The amplitude D and the phase 6 of the driving term 
can be expressed in terms of the machine parameters 
and the nonlinear force which is driving the resonance. 
By writing equations of motion for 11 and 12, one can 
easily verify that the quantity 

c E (211)/(2P) - (212)/(2q) (‘3) 

is an invariant, that is, dC/dB = 0 with the inde- 
pendent variable 0. 

Analogous to the concept of fixed points in the 
two-dimensional phase space, one can define "fixed 
lines" in the four-dimensional space (11, al, 12, 
a2) from the following three conditions: 

dIl/dB = d12/d6 = d$/d0 = 0. (9) 

Conditions for 11 and I2 aresatisEied (excluding the 
trivial solution I1 and I2 = 0) by taking sin($) = 0. 

*Operated by the Universities Research Association,Inc. 
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If one defines the quantity w, 

w ': ]~/IeIl~os(@), (10) 

it must be +1 or -1. The condition for $ is then 

E = -[~/~~~]w*D.(211)~-1(21~)~-~ 

x [(2P)2(212) + (2q)2(211)l. (11) 

Since D is positive by definition, this is satisfied 
only for w = -1. Action variable is related to the 
emittance of the beam E 

21 = E/a (12) 
and one finds the expression for the "bandwidth" given 
by Guignard', 

he E 21~1 = 2D (El/l~)~-l(E~!r)~-~ 

x [(2~)~(E~/n) + (2q)2(El/x)]. (13) 

A peculiar feature of this expression is that, for 
p = l/2, the width increases indefinitely as El ap- 
proaches zero while E2 is fixed. This is contrary to 
the meaning of resonance width as it is generally 
understood. This peculiar feature is related to the 
(erroneous) statement made by Sturrock in connection 
with the resonance V1 + 2v2 = n: 

"The most surprising feature of the stability 
diagram of Fig. 28 is that there are points of arbi- 
trarily small amplitudes u, v, which lie outside the 
stable region."1 

The purpose of this note is to examine in detail why 
resonances of the form vl + (2q)v2 = n are different 
from others. The special property of these resonances 
has been pointed out by Lysenko3 but his argument is 
qualitative. The discussion given below is intended 
to delineate the point. 

II. 

Since the Hamiltonian,Eq. (6), is independent of 
the variable 0, it is an invariant. From two invari- 
ants H and C, Eq. (8), one can construct two invariant 
expressions $1 and a2. 

al = H + (E/2).C.(2q)2/[(2p)2+(2q)21 

= (E/2)(211)/(2P) + D~cos($+(211)p(2r2)q (14) 

a2 = H - (e/2)C.(2p)2/[(2p)2+(2q)2] 

= (E/2)(212)/(2q) + D.~os(o)*(2I1)~(212)~. (15) 

One can further simplify the form of two invariants by 
the normalization 

X 5 A.[E//EI]*@~, JJ : A*[E/IE/]' a2 (16) 

qhere 
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A E (~/IEI)(~D/IEI)~~(~P)~'~(~~)~'~, (17) SL u 

s-p+q-l. W 

The corresponding normalization of two action variables 
is 

u 2 5 (211)'(2D/~ej)l'S(2p)q"s(2q)q's, 

" 2 Z (212)~(2D/~~~)l's(2p)P's(2q)p"s 

where p' G l-p and q' Z l-q. The final form of two 
invariants is 

x = u2 + u2pv2q*w , (21) 

!.I = v2 + u2pv2q.w. (22) 

For physically meaningful solutions, both u and v must 
be positive (or zero) and IwI must be less than or 
equal to unity. One can eliminate the variable v using 
the relation 

2 2 v =ll - (A - u>, (23) 

and the problem is reduced to finding the amplitude u 
such that the absolute value of 

Fig. 1A Fig. 1B 

W 

1 ------------------- 

x - u2 

" = u2p (u2 - x + v)q 

(24) -+@ Fig*lc 

is less than or equal to unity. The motion is stable 
if this condition restricts the value of u within a 

1) p=l. 

finite range. In the (X, n) space, there are three 2 

regions with different characteristics: M=4d.[p+*. A] >o (29) 

(1) First quadrant, )i > 0 and n > 0. See Fig. 
lA. The function w(u)has one minimum point. 
If the minimum point is below -1, the motion 
is table (curve S). If the point is above 
-1 (curve U), u can take any value and the 
motion is unstable. The limiting case is the 
curve L. 

(2) h = 0 and n >O. See Fig. 1B for p = l/2. 
There is no stable motion for other values 
of p. 

(3) Second, third and fourth quadrants, (X<O,$O) 
(GO, p<0). Note that n = 0 is excluded. 
The function w(u) can have one maximum and 
one minimum point. See Fig. 1C. It will be 
shown below that there is no stable motion 
of this class unless p = l/2. 

The maximum or minimum points are solutions of the 
condition dw(u)/du = 0 which takes the form, with 
x : u2, 

(2s) -x 2 
- 2[(s+p) x+ Cl-p)Lll*x + (Zp)X(X-n) = 0 (25) 

and the solutions are 

"M2 = 1/(2s) ' [(s+p)X+(l-p)p It &I, (26) 

M S(S-~)~X~ + (1-p)'n2 + 2[(s+p)+p(s-p)]An . (27) 

The corresponding values of v2 are 

2 
"M = "M2 - (A - p) 

2) Pfl. 

l-3 = bP)2(u+sx) (!J’TlX) >o. (30) 

Comparing this expression with Eq. (27), one 
sees that both 5 and n are non-negative. 

From Eq. (26), it is obvious that there are at 
most two values of uM. At the same time, from Eq. (24) 
for w(u), it is already known that there is one minimum 
point when both X and n are positive. The remaining 
problem is then to find the conditions for two values 
of uM to exist in the second, third and fourth quad- 
rants of (A, u) space. 

From Eq. (28). in order to have two real values of 
vM, it is necessary to satisfy the condition 

s-p 
I-"2s-p+l *A. (31) 

Since s >c p, the coefficient in front of h in Eq. (31) 
Is non-negative. This condition excludes the fourth 
quadrant X > 0 and p < 0. Two values of UM are pos- 
sible if and only if the following two conditions are 
satisfied [see Eq. (26)], 

(s+p)h + Cl-P)U>O, (32) 

[(s+p)A + (1-p)p12 3 M. (33) 

The condition (33) is equivalent to n > A in the second 
and third quadrants of (h, p) space. However, this is 
automatically satisfied because of the condition (31). 
The coefficients in front of X is always less thanunity, 

= (1/2s).[-(s-p)h+(2s-p+lju ihil. (28) 
2sspc1 p Cl. (34) 

Since uM2 must be real, M must be either 0 or positive. As for the condition (32), 



(1) p = 1, X > 0 (fourth quadrant)which is al- 
ready excluded. 

(2) P ' 1, ll < [(s+P)/~p-l)l’~. 

The coefficient in front of A is always 
larger than 3 and the condition is in contra- 
diction with the condition (31). 

(3) p = l/2, 

p > - 2q.h. (35) 

This condition as well as the condition (31) 
are satisfied in the second quadrant X < 0 
and p > 0. 

By evaluating < and n in Eq. (30) for p = l/2, 

(E;, q) = (6s + 1) + 4Js(2s + l), (36) 

one can see that 

0 < (%I < 5. (37) 

In conclusion, stable motions are possible if 

(1) X > 0 and n > 0 for p # l/2. 

(2) X & 0 and p > 0,~ x < 0 and 

v >/- j6~+1 + 4/~(2s+l)].X for p = l/2. 

III. 

The resonance studied by Sturrock' corresponds to 
p = l/2 and q = 1. He missed the region X < 0 and 
u 3 -8h which is shown in Fig. 1C. If X is limited to 
positive values, one finds from Eq. (21) with w = - 1, 

U 2(P-l)"2q < 1 (38) 

For p = l/2, this leads to the exclusion of points 
near the origin as stated by Sturrock. In order to 
find the stable region in the phase space or, equiva- 
lently, in (u, v) space, one must solve [dw(u)/du] =O 
together with w(u) = -1 for u = uM, the maximum pas- 
sible stable amplitude. Analytical soluti ns are pos- 
sible for (p = l/2, q=l)l and for (p=q=l). z For 
u1 + 2 V2 = n, the limiting values (uM, vM) of Figs. 
1A and 1B satisfy the relation 

2 
"M = 2.uM(l - UM) (39) 

which is equivalent to the expression of bandwidth, 
Eq. (13), found by Guignard.2 If the case represented 
by Fig. 1C is included, one finds that the stable 
motion is confined in the region bounded by u = 0, 
v = 0, Eq. (39) and 

v = (1 + u)/2 (40) 

Two amplitudes of the motion, u and v, near the 
resonance Vl + 2V2 = n are normalized such that u 2- 
v2 = constant. According to Sturrock, the motion is 
stable (u and v finite) if the initial amplitudes are 
within the area bounded by v = 0, v = & and v = (l-u)/2 
regardless of the values of initial phase. The motion 
is confined to the area bounded by v = & and v = 
Ru(l-u). The bandwidth given by Guignard is equiva- 
lent to saying that the motion is confined to the area 
bounded by v = 0 and v = J2u(l-u). In either case, the 
initial condition represented by point P would be un- 
stable for some values of phase. Because of the con- 
dition u2 - v2 = constant, the motion must follow the 
hyperbola, the dotted curve which passes point P'. 
However, we know that point P' is stable regardless of 
the phase and this contradicts the assertion that P is 
unstable. 

as shown in Fig. 2. 
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