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Abstract 

A simple theoretical study and numerical estimate 
is presented for the transverse amplitude growth of a 
nonrelativistic heavy ion beam in an induction linac, 
as envisaged for use in commercial power plants, due 
to the nonregenerative coherent beam breakup mode. 
An equivalent electrical circuit has been used to 
represent the accelerating induction modules. Our 
calculation shows that for the parameters of 
interest, the beam breakup amplitude for a heavy ion 
beam grows extremely slowly in the time scales of 
interest, to magnitudes insignificant for transport 
purposes. It is concluded that the coherent beam 
breakup mode does not pose any serious threat to the 
stability of a high current (kA) heavy ion beam in an 
induction linac. 

I. Introduction 

High current heavy ion beams are being actively 
studied as potential drivers for inertial confinement 
fusion. Such high current nonneutral beams are 
subject to coherent and incoherent, transverse and 
longitudinal, collective instabilities arising from 
the beam space charge (self-force) and its 
interaction with the environment (external 
impedances, cavities etc.). In this paper, we study 
the growing coherent transverse motion of a high 
current (-kA) heavy ion beam due to an oscillatory 
transverse mode ( analogousto TM110 mode of a 
pill-box cavity) excited by the beam in the 
accelerating modules. The subject has been studied 
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ction with electron linacs by 
who computed the upper limit 

of transportable tot:1 charge set by the growth of 
beam breakup amplitude. However no such study has 
been reported for heavy ion beams transported by 
induction linacs. 

II. Model For Transport 

Our theoretical model of transport is a 
semi-infinite series of identical accelerating 
induction modules with identical focussing elements 
between them (see Fig. 1). If the beam centroid is 
off center (or if the beam is centered in an 
azimuthally asymmetric structure), it will excite a 
transversely deflecting mode in the modules. The 
induced electromagnetic fields act on later parts of 
the beam, causing a transverse motion of the beam 
centroid. The amplitude of the coherent beam 
oscillation increases from head to tail in a bunch, 
the cavity excitation increases in time at any 
location and increases in distance along the 
accelerator. 

Our analysis is based on the following 
assumptions: 

(a) Only one effective resonant mode of 
frequency R and quality factor Q is of significance. 

*This work was supported by the Director, Office of 
Energy Research, Office of Inertial Fusion, Research 
Division of the U.S. Department of Energy under 
Contract No. W-7405-ENG-48. 
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(b) Focussing can be treated in the smooth 
approximation i.e. focussing fields of quadrupoles or 
interrupted solenoids can be replaced by their 
average values. 

(c) There is no acceleration. 

(d) The process is 'non-regenerative',i.e. there 
is no propagation of electromagnetic fields from one 
induction module to the next and information is 
carried only by perturbations on the beam. 

(e) The rate of amplitude growth is small 
compared to 3. 

III. Induction Module Response 

An induction linac module differs drastically 
from an r.f. cavity in its response to excitation by 
a particle beam. There is no accelerating mode as 
suchf6); the longitudinal interaction of beam and 
module is best represented by an equivalent circuit 
involving the external drive, corresponding typically 
to a frequency of a few megacycles and strongly 
overdamped by the low drive-impedance. For the 
asymmetric modes of interest to the beam breakup 
phenomenon, the module looks like a pill-box with 
conducting end walls and a lossy outer wall traversed 
longitudinally by one or more conducting straps. 
Accordingly, we take as a model the excitation of the 
TM110 mode of a pill-box cavity with a radius of 
about half a meter and a Q of about 10. 

The vector potential can be written as: 

Az = A(t) J1 (: r) Cos e 

and A satisfies the differential equation: 

‘A + .E\ +Z2A = PO 
A 

~cj,*J,(jllJ,(jl) 
E(T) (1) 

where I is the beam current, <(T) is the transverse 
beam displacement at time T following beam arrival at 
the module and the other symbols have their 
conventional meanings. In traversing the cavity, 
the beam experiences a change in slope (see Fig. 2) 
given by: 

bi.'-+By+&$ 
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where Z is the charge state of the ions, f 
effective cavity length (including a trans 
factor) and mvo the particle momentum. Us 
solution of eqn. (l), we then have: 

the 
it time 
ing the 

A:# - = -iG 
L / 

e-u (T-t) E(t) ,iR(T-t) _ e-iR(-r-t) 

I 

where Pk3 

c2jlzJo(j,)J,(j,) 1 
with rp = (e2/4ncom c2)(classical proton radius), L 
the distance betwee! modules, i! the current in 
particles per second, and A the atomic number. 

IV. Equation of Motion and Solution 
in Closed Form 

In the approximation that both focussing and the 
impulses from the modules can be replaced by their 
average values (smooth approximation), the transverse 
displacement is then determined by an 
integro-differential equation: 

J 

T 

F;(z,T) = -iG ,,t e-a ('-t) 

n 

L J 

where wB is the coherent spatial betatron 
frequency. Then, with a change of variable, 

5(2,7) = evaT [X(z,~)e iR-c c., 
+ X*(Z,T)~-'""~] (2) 

where X(Z,T) is a slow 
arrive at the equation{?)~arying function Of T’ we 

T 

X(Z,T) = -iG 
s 

dt X(z,t) 
n 

We have neglected a rapidly varying term in e2icT 
in arriving at eqn, (3). We now take a Laplace 
transform of eqn. (3) in 'I obtaining: 

a2 x (2,s) + w 2 

az2 [ I 
6 

+ $ X(z,s) = 0 

with the immediate solution: 

i(z,s) = i(O,s) cos [(ug2 + y2z] 

For an initial displacement 

~(O,T) = d evaT cos QT 

we have x(0,-c) = $ and ;(O,s) = & 

Thus: x"(z,s) = g cos [(q + yzz] 

the 
Using infinite2and binomial series expansions for 

mak 
cosine and (ws + iG/s)n respectively and 

ing use of the Laplace inversion formula 

L-1 1 5" 

( > 
sn+T =nl 

we get an expression for X(Z,T) involving a double 
sum over integers; one of which can be summed in 
closed form to give spherical Bessel functions. We 
finally get: 

X(Z,T) = $2(-i)% -&-2- Jj$ 
e 

( > 
(W z)j (W 2) s L s (4) 

il=0 ! 

After a few betatron wavelengths down the 
accelerator, wgz >> 1 and we use: 

jQsl (y$ -‘d & cos b,z - ;a.11 (5) 

Using (4), (5) and (2), we finally arrive at the 
expression for the transverse beam displacement 
E;(z,-r) at location z and time T following the arrival 
of the front of the beam, in closed form, as follows: 

6(2,-C) = $ emaT 

(6) 

where Jo and I, are zero-order Bessel and 
modified Bessel functions respectively. 

We note that in the limit of no focussing at all 
(I+ = 0), we have: 

x(2,?) = $2(-i)% ~$j$$& 
g.=o 

so that the absolute square of the slowly varying 
amplitude grows as: 

hkd( 2 = $-j$2~)2n 2 ml t2mji c2n;;! t4 C-1 1 
n=o 

n-2m)! 
m=o 

in agreement with Panofsky and Bander(Z) and hence 
is expected to scale similarly as 

IX(Z,T)I~ - es with s = (Gz'~)l/~ 

V. Numercial Estimates: 

We observe from expression (6) that the beam 
displacement is damped on the whole if (1 > (Gz/+); 
if CI <c (Gz/~w~), the maximum in T of the amplitude 
of displacement comes atr = (Gz/2wga2) and has a 
magnitude: 

,Gz12wBu 

As a numerical example, we consider an induction 
linac that accelerates singly charged Uranium ions, 
with a 30" phas? .j dvance between modules. Example 
beam parameters B for two significant cases and 
Parameters of equivalent induction module cavities 
are listed in Table I below. 
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TABLE I 

A 
Ion Uranium 
Charge State, Z +1 
Atomic Number, A 238 
Beam Energy 3 MJ 
Kinetic Energy 
i?r 

;02G;",Dl5 

Resonant frequency,fi 300 MHz 
Q of cavity (a = 52124) 10 
Effective length of cavity,R 5 cm. 
Distance between modules, L 1 meter 
Phase advance per module, wBL 30" 

With these parameters, we find that the 
transverse beam breakup amplitude is damped for 

3. 

B 
Uranium 
+1 
238 4. 
JO MJ 

;03G;",o15 

300 MHz 
10 5. 
5 cm. 
1 meter 
3o" 

6. 

z < 540 km for Case a with‘3 kA current $nd z < 180km 
for Case 6 with 10 kA current. These distances are 7. 
much larger than the length of about 10 kms. 
visualized for Inertial Confinement Fusion drivers. 8. 
Beyond these distances, the magnitude of maximum 
amplitude grows with distance down the machine as 

X = $! 6 z-“’ eyz , 6 = (4nv)-l/2 

where r = 1.85 x JO-5 m-l for Case A and 
-, = 5.55 x 10-6 m-l for Case B. 

Conversely, for a JO km. long machine, the beam 
breakup amplitude starts becoming significant when 
the oroduct (C)I) is about 1850 kA. For a Q of about 
10 as in Table I, this implies no growth of 
tranvserse amolitude upto a current of 185 kA. For a 
beam-carrying'about JO. kA current, as envisaged in 
typical ICF drivers, we would need a Q of at least 
200 for transverse oscillations to start to grow. 

VI. Conclusion 

As is evident from the estimates above, the 
damping due to the low-Q, heavily loaded induction 
modules is dominant over the cumulative buildup of 
the beam breakup mode and prevents growth of 
transverse oscillation amplitude for large distances 
of the order of hundreds of kilometers or 
equivalently up to high currents of hunzeds of 
kiloamperes! For an accelerated beam, the total 
pulse duration is usually much shorter than the time 
at which maximum growth occurs for very large 
distances. We conclude that high current heavy ion 
beams in induction linacs are safe against the beam 
breakup mode in general. However, induction modules 
driven asymmetrically in azimuth, could be dangerous 
for beam transport against the beam breakup mode, 
since the beam would have no equilibrium orbit at all 
in such a case. 
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