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Summary 

PARMILAI is an internationally accepted standard for 
Monte Carlo simulation of linac and transport line 
oerformance. We discuss several modifications and 
improvements to this code. A generalized magnet 
routine allows the simulation of electrostatic and 
magnetic quadrupoles, solenoids, sextupoles, and 
octupoles. Optional inclusion of linear fringe fields 
and/or geometric aberrations is provided for in the 
quadrupole transformation. The dipole routine has been 
replaced with a more accurate algorithm. The acceler- 
ating gap transformation has been replaced by a set of 
implicit equations which accurately describe the rela- 
tivistic particle behavior in the presence of longitud- 
inal and transverse electric fields described by a set 
of 6 weighted Fourier moments (transit time factors). 
A simple model allows these moments, in turn, to be 
approximated from the cell geometry and the usual T and 
S functions. A number of added convenience features - 
interactive disk storage and retrieval of particle 
coordinates, individual particle input and observa- 
tions, an interactively callable test for particle 
longitudinal stability, and an automated quadrupole 
tuning procedure - al 1 add to the code's versatility, 
convenience, and strength as a design tool. 

Dipoles 

In the dipole subroutine, BEND, both the vertical edge 
focusing and the central region tracking algorithms 
have been changed. For an edge angle B with vertical 
focusing, the effect of edge focusing is modeled by the 
transformation2 

x’ = X; + (X,/P) tan 8 

To extend the generality of effects which can be 
treated, we have added a coordinate rotation capability 
to the low energy beam transport (LEBT) routine. A 
rotation by angle o about the z axis before the bend 
and by - e after the bend, for example, simulates the 
effect of a bend at angle 8 with respect to the hori- 
zontal. 

Generalized Beam Optics 

A new routine, MAGNET, has been written to allow quite 
general treatment of the effects of solenoids, magnetic 
and electrostatic quadrupoles, sextupoles, and octu- 
poles. 

Solenoids 

The solenoid transformations were taken from Banford. 
The element is divided into N sections. Entrance and 
exit fringe transforms 

x ' = x; ct y,& 
(3) 

Y' = r; T x0& 

are applied in the first and last calls. In between, 
there are N sequential transforms through the constant 
central field regions 

x' = x' o cos (L/Np) + yC; sin (L/Np) 

y' = -X;, sin (L/Np) t yo CDS (L/Np) 
(4) 

x=x +x1 
0 0 P sin (L/b) + Y; P [I - cos (L/ND)] 

y=y,-x; p l- 
[ cos (L/No)] + Y; P sin (L/Np) 

y'= G- (yolp)[tanR - (0.5 + tan* B)(g/p,) set 8. 
1 

where L is the solenoid length. Between sections, 
space charge calculations can be performed. 

In Eq. (l), x0? xo, yo, yd refer to the initial Quadrupoles 
horizontal position and divergence and vertical posi- 
tion and divergence. The particle radius of curvature, The first order equations of motion in a horizontally 
p, is the ratio of the rigidity (BP) to the magnetic focusing quadrupole are 
field strength (B,), while p. is the synchronous 
particle radius of curvature, and g is the magnet gap. X” + Kox = 0 

(5) 
The transformation in the central region is that used 
in DECAY TURTLE.3 For a bend angle 4, Y" - Kqy = 0 

with 
x = (x0 + PO) cos Q + pccos B2- cos(e1 + 4)-J - Po 

B'/(Bp) for magnetic quad 
x' = tan e2 

K = (6) 
Y + y; p [@ t 81- e,] cos 01 9 

= Y, 
yqeE'/(y + 1) AW for electrostatic quad . 

Y' = Yb cos el/cOs e2 , 
In Eq. (6), B' and E' are the magnetic and electric 

where field gradients, W is the particle kinetic energy per 
nucleon, and A is the atomic mass number. For con- 

e1 = tan-l (xi) stant Kq, the first order solutions to Eq. (5) are 

(2) we1 1 known. In order to allow for a more realistic 

= sin (e, + $) - 
[ 

(x0 + P,)/P, 1 
behavior of Kg, we have added the option for a piece- 

sin e2 sin C$ . wise linear behavior of Kq(s) over the fringe field 
regions. Equation (5) may then be solved exactly in 

* Work supported by U. S. Department of Energy. terms of Airy functions.5 The third order expansion 
+ Science Applications, Inc. of that solution has been implemented. 
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If third-order eometric aberrations are included, 
Eqs. (5) become 2 

x” + Kq x = $ K [-3xx” - xy” + 2X’YY’ 
q 1 

+ KI; xyy' t k K;; (xy' + x3/3) (7) 

y” - Kq y = + Kq 3yy” + x”y - 2Xx’)” 1 
- K;I xx'y - % K;; (x'y + y3/3) 

Equation (7) is solved approximately by treating the 
right hand side as a small perturbation on the orbits 
predicted by Eq. (5). A Green's function integral 
approach is used. For example, the perturbation ax 
obtained in passage through a short section, L, of 
magnet is approximated as 

Ax = L IL fx (s) ds - IL s fx (s) ds (8) 
0 0 

and Ax' = d (Ax)/dL. Results in the y plane follow 
with K, z - K and x t: y. The force terms f, are the 
right hand si!e of Eq. (7) with x = x0 + SXb, y = yo 
+ syb, x' = xb, and y' = yC, . 

Sextupoles and Octupoles 

Higher order magnetic multipoles are treated as pure, 
hard-edged fields. The magnetic field of a Z(n+l) 
order multipole is 

_B = [B. a/(ntl)] y (r/a)"+l sin (ntl) B (9) 

where B, is the pole-tip field at radius a, and (r,e) 
are the cylindrical transverse coordinates. The coor- 
dinate transformation is then given as a drift length 
plus a perturbation, i.e., x = x0 + Lx6 + Ax with 
Ox obtained as in Eq. (8). 
KS(x2 - y2), 

For a sextupole, 2fx(s) = 
fy(s) = ZK,xy with Ki',;PB_o[\Q~;nj)y\h; 

octupole forces are f,(s) = - K. x 
= K,y (3x2 - y2) with K, = Bo/(Bpa3). 

Gap Transformation 

In an accelerator gap, particles follow an orbit 
throuah a nonlinear space- and time-dependent electric 
field: PARMILA models .this process by a series of three 
transformations: a free (unaccelerated) drift to the 
gap center, a single point transformation, and another 
free drift. A lack of documentation for the "as 
received" point transformation has led us to carry out 
a detailed, self-consistent derivation. The resulting 
algorithm differs from that supplied with PARMILA. 

We use the following physical approximations: 

1) The effective electric field which causes particle 
acceleration is 

Ez (z,r) = [l +(~/B~x)~]E; (~1 

!t (z,r) = - si 5 (a/az) E!j 
(101 

2) In small correction terms, the particle velocity,B, 
may be replaced by B = 4 (Bin t sout). 

3) The point transformation at the gap center, ex- 
pressed in terms of the particle coordinates 
there, is unaffected by the presence of space 
charge or focusing. 

The relativistic equations of motion, in the absence of 
space charge or focusing, are r 1 

dW/dz = (q/A)eEZ [z, r(z)] cos F ,“ &) + 40] 

d$/dz = (h/X) (8-l - BJ (11) 

(d/dz) (BY d_r/dz) = (qe/AmBc2) Et [z, c(z)] 

x cos [F iz ;g, + @o] 
0 

In Eq. (ll), W is the particle kinetic energy per 
nucleon, o is its phase, r(z) its transverse displace- 
ment when it reaches longitudinal position z. The 
particle velocity is Bc, B,c is the synchronous veloc- 
ity, h is the wavelength of the rf accelerating field, 
and $. the particle phase at the gap center. 

Using the approximations above, these equations can be 
integrated through a linac cell extending fromI;=;he; 
to z = & with z = 0 at the gap center. 
absence of space charge and focusing, we find 

cp out = Q. In 
+ '1 @in ' L2 @&t + C T' (sinOS -sinoo) 

: 

t S’ (cos @s - cm @,I 1 
W out 

= Win + (q/A) eVg I [T - 2n (3,/B - 1) T' 

t (~ro/~sX)z T - (~T'/~~x)c~ .$ S'] cos $0 

t I s + 2n (B,/B - 1) s 

- (2n2/~Sh)t-o . 5; T’ I 

C = 2nqeV /AmE 7" c2 
4 ss 

t (nro/BsX)2 S 

sin Q. 1 

(BY)in 2 \ 
'l, 

(BY) i 
in (1t~~)2+~Bc ' 

(BY)out Q / 

1 
A = (qeVglPmg2 7 &I[T - ZTI (8,/B) T' 1 cos 0, 

t [s + 271 (8,/E) S’] sin 4. 1 

8 = (nqeVg/Amfi2 c2 A) {[s + 2n (6,/B - I) S'] 

X cos cQo - T - 2n ($,/a - 1) T' 
I 

sin $. 1 

c = _ (qevg~//w~*-~2c2) 1st cos +. + T’ sin o,] 
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Individual Particle I/O 

D = 1 - $ (A' + I3C) (12) Individual particle coordinate input and observation is 
often useful; a few rays carefully placed in phase 
space can characterize the entire beam behavior. We 

Eqs. (12) are an implicit transformation since they have added the capability to explicitly enter the 
involve, e.g., the gap-center values initial ray coordinates and to observe the final 

coordinates at the interactive terminal. 

$0 = @in + %l 4& (sin $s - sin o,) Test for Longitudinal Stability 

+ Sk (cos Qs - cos e,)] (13) 
From the approximate longitudinal equation of motion of 
a particle under constant average accelerating field 
and in the presence of space charge forces, it is easy 

oscillations 
= Ji (rin + ~1 _r;n + rout - ~2 C~Ut) 

to show 7 that $I will execute stable c 

-rO 
provided 

and 

In these expressions, V is thevoltage acros.5 the gap, 
while the transit time 9 actors are /W - Wsl 5 [- (qeEl2nA) sin as B3y3Xmc2 

12 
T = V-l / E; cos wtS(z) dz 

g -a, 

s = - v-l 1 
L2 

g -e, 

Ez sin wts (z) dz 

T’ = V-’ L2 

9 -i, 
(z/~~h) Ez sin Wts (z) dz 

s' = - Vi' je-2 (z/6,x) E; cos WtS (z) dz 
-4, 

T": = Vi1 -,' (z/6,X) Et sin mt, (z) dz 
1 

(14) 

Sk = - v-l j-O (z/8,X) E; cos wtS (z) dz , 
g -1, 

where 

tS (z) = c-' I' W8, (E) s 
0 

A simple parametric model 

E; = (a t b z) 0 (zl - 1~1) (15 

may be used to approximate T', S', T'h and S'b in 
terms of T and S. Here, Q is the'H;aviside'step 
function. while a, b, zl are parameters to be fit to 

1 - k)]% 

($1 - Q3 - (4 - $JJ3 4 
x ($1 - q2 - (4 - 4,)” f 3 (1 - k) os 1 

where 

a1 = - (1 - 2 k) 9, 

(16) 

In Eq. (16), Qs and W, are the synchronous phase 
and kinetic energy, and k is the ratio of space charge 
to gap defocusing forces. A command has been added 
which checks all particles according to the criteria in 
Eq.(16). The average accelerating field and the beam 
current and shape (used to determine k) are optionally 
either input with the command or calculated from the 
next cell description and the rms beam parameters. 

Automated Tuning 

Our technique for optimizing the quadrupole gradients 
in a linac is to force the rms emittance ellipses in 
the x-x' and the y-y' planes to make equal but opposite 
tilt angles with the x and y axes at the "neutral" 
positions midway between horizontally and vertically 
focusing magnets. A Newton's method interactive 
search has been implemented to find the gradient 
values which satisfy this criterion. 
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