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Abstract 

Inertial Confinement Fusion (ICF) using high 
energy heavy ion beams requires tight focussing of the 
igniting ion beams in longitudinal, as well as 
transverse, apace at the pellet target. This sets 
significant requirements for stability in longitudinal 
motion. It has been previously noted that this motion 
can contain significant resistive wall instability. 
Results of numerical simulations of this instability 
in perturbed bunched beams are presented and analyzed. 
It is found that reflection of perturbations off bunch 
ends is distorted and delayed by apace charge forces 
and that "soliton" waves can appear after reflection. 

Introduction 

In earlier papersl'2ts we have explored some 
characteristics of longitudinal motion in intense ion 
beams. In references 1 and 2, longitudinal motion in 
bunched beams with "apace charge" forces is studied 
analytically and in reference 3 longitudinal motion in 
coasting and bunched beams with "apace charge" and 
"resistive wall" forces is explored analytically and 
numerically. In reference 3, we find that the "apace 
charge" force causes wave propagation of disturbances 
in an equilibrium distribution and that a resistive 
force can cause unstable growth of these disturbances. 
In this paper we extend our discussion of this wave 
instability and note characteristics of the "wave 
reflectionI' which occurs when these disturbances reach 
the ends of a beam bunch. "Soliton" formation is 
observed in reflection, as described below. 

Equations of Motion 

We choose the longitudinal position within the 
bunch z and the distance along the accelerator a as 
our dependent and independent variables. We assume, 
as an approximation, 
completely decoupled and 
Then for the equation 
three forces: 

that transverse motion is 
the bunch is not accelerated. 
of motion we take the sum of 

1) a "space charge" force 

where qe, M, and @c are the ion charge, mass and 
velocity, g a geometric factor, and h the ion charge 
density. 

2) a "resistive wall" force 

-BX q - 
-q2e2R7 x 

MBC 

where R1 is the resistive coupling per meter. 

3) a bunching force F(z,a) provided by external 
fields. 

*Operated by Universities Research Association, Inc. 
under contract with the U.S. Department of Energy. 

Our equation of motion is nonrelativistic: 

= F(z,a) - A 2 - BA 

To demonstrate the coasting beam instability, we 
start with an initial distribution 

fo(z,z') = N' 6(z') 

where N' is the initial ion density and the velocity 
distribution is taken as a g-function to approximate 
the low velocity spread case of an ICF driver. 

We take a perturbation: 

f = fl (2') e i(kz-ws) 
1 

and solve the linearized Vlaaov equation for w(k), 
obtaining 

flJ2 = N'(A k2-ikB) (5) 

When Ak >> B, as is true for HIF linaca, we find: 

Re [f) = *m Im(f) 2 2 @ff (6) 

Since Ret:) g ?v'G is independent of k, the wave 
velocity and group velocity are equal, which means 
disturbances propagate together as coherent wave 
packets along the beam. Also the motion is unstable, 
since Im(w) #O. A forward propagating wave decays 
(Im(w)<O) and a backward wave grows. 

Typical parameters for ICF can be substituted 
into equations 5 to find sample values of Re(w/k) and 
Im(w). For example with R' = 100 Q/m, N’ = 3x1019 
ions/m, q 
Re(w/k) = 7. ;,;g I&: * I~(;)2~oJjo;n~-B =w;l::Tgy;:: 
a growth distance (500 m) smaller th& typical ICF 
design lengths. 

This behavior has been seen in numerical 
simulation of longitudinal motion in beam bunches with 
HIF parameters, using a program first developed by 
Buchanan, Neil and Cooper.' In figures 1 we show an 
initial disturbance in the center of a beam bunch 
splitting into forward "fast" and backward ~~alow'~ wave 
packets which decay and grow respectively, in 
agreement with equation 5. 

Reflection of Wave Packets at Bunch Ends 

In bunched beams the wave packets of a 
perturbation will reach the bunch ends in a finite 
time. A naive expectation is that a growing slow 
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Figure 1-A-D. Wave propagation in a perturbed beam 
bunch with “resistive-wall” and “apace charge” forces. 
The perturbation splits into a decaying “fast” wave 
and a growing slow wave. The upper graphs show I(T) = 
AC-Z) ; the lower graphs show the phase apace 
distribution f(t,BE) 0~ f(-2,~‘). 

wave will reach the end of the bunch, be immediately 
reflected to a decaying “faatl’ wave by the external 
bunching field and produce no net instability. 

Simulation indicates that reflection iS 
substantially delayed in HIF besms,3 in fact, more 
than would be expected by considering the motion of 
single particles past the bunch ends to reflection by 
the bunching force. Reflection is a collective 
process strongly influenced by apace charge forces. 
It can be understood by approximating the bunch end by 
a parabolic distribution’ with N particles, 
characteristic length ZO, emittance eL, and a linear 
bunching force balancing the debunching force 

d2zo _ o = zo” r. - - EL 3 A N -Kz 

da2 
- g3+2zo’ 0 (7) 

In HIF beams eL is small and will be ignored below. A 
disturbance reaching the end of the bunch perturbs 20 
to z. +Azo(a). The equation for AZ0 is: 

d2Azo 
yg27 =- -(-s -K) dzo = -3 K &o (8) 

or 4km with typical HIF parameters. 
analysis agrees with the numerical 
shown in Figures 2. 
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Figure 2-A-G. Reflection of perturbation off bunch 
ends with zero “resistive wall.” Envelope oscillation 
is noticeable as well as particle oscillations to 
large Ap/p at the ends. 

Velocity Wave Formation 

In simulations with resistance, an interesting 
phenomenon can occur when a large perturbation is 
reflected off the bunch end. The return wave is 
changed in character from the initial wave and changes 
the average energy of the bunch. In Figure 3A we show 
a phase apace distribution from a numerical simulation 
showing this characteristic wave form. 

Similar behavior can be seen in a simple coasting 
beam model in which we collapse the velocity 
distribution to delta functions as in section 1. The 
distribution is 

f(z,z’) 

f(z,z’) 

= x0 6 (z’) z >zo+vws 

= Xl 6 (z’+Vo) 2 <zO+Vwa 

This has a “velocity” wave propagating with speed 
V w and with amplitude Vo, as shown in Figure 3B. 

This anaatz must be self-consistent, which means: 

1) The particle flux entering the wave front must 
equal the particle flux leaving the wave front: 

VW x0 = ~l(Vw+VO), 

Reflection occurs when Azo oscillates over a 
phase TI, that is, 2) Particles in the distribution must receive an 
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Figure 3A. Spontaneous appearance of "aoliton" mode 
in f(z,z') after reflection of perturbation off bunch 
end in bunched beam with "resistive wall". 

f fZ.2’) 

Figure 3B. Description of "aoliton" mode in beam; 
f(z,z') and h(z) are displayed. 

impulse -Vo from the space charge force as the wave 
front passes through them. The apace charge force is 
found from equation (1) 

dh (a -aI) F = -Ax Z-A ; (11) 

where we have stretched the discontinuity of figure 3B 

over a distance 6. The impulse received as the wave 
passes is: 

1 : -A 9.6 _ -A (a;+) = -vo 

vW- 
(12) 

W 

Equations 
obtaining: 

This is the 
harmonic wave, 
treatment is 
similar "slow" 

(10) and (12) may be solved for VW1 

same wave velocity obtained above for a 
except that XO is replaced by x1. This 
for a forward-going "fast" wave; a 
wave can be formed by changing the sign 

of VW and following the self consistent conditions. 

The above description is valid for coasting beam, 
zero resistance motion. Maachke' has also noted that 
similar waves may appear in those conditions and calls 
these waves naolitona". 

Our simulations show that these "aolitona" can 
appear spontaneously in bunched beam with finite 
resistance when disturbances are reflected off the 
bunch ends. Their behavior is in agreement with the 
coasting beam constraints. 

Analysis of stability in this characteristic wave 
propagation mode is important in determining 
longitudinal stability. Numerical simulation so far 
indicates that the returning "fast" aoliton does not 
decay as predicted for harmonic waves above. Further 
numerical and analytic study is necessary. 
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