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COHERENT NORMAL MODES OF COLLIDING EEAMS* 

R. E. Meller and R. H. Siemann** 

Abstract 

The coherent normal modes of the nonlinear collid- 
ing beam system are calculated using averaging methods 
to find an eauivalent infinite svstem of linear coupled 
oscillators. ' The condition of a-consistent, stationary 
state leads to an eigenvalue equation for the charac- 
teristic frequencies and transverse exitation distrib- 
utions of the modes. Results are presented for modes 
along the narrow axis of a GauSsian ribbon beam. The 
tune split is related to L/J(I I-) for different values 

of I+/I- and of c;+/a- . 

Method 

Assumptions and Definitions 
It will be assumed that the particles in each 

bunch have a betatron exitation in both transverse 
directions due to radiation, and that the equilibrium 
charge density is proportional to Ex~(-x~/~u~-x~/~u~ ), 
where ux~>a . It is also assumed that there are no 

lattice resEtlances or other couplinas except due to the 
collisions, that there are two collisions per revolu- 
tion, and that the particle energy y>>l. 

A coherent mode is defined as a correlated oscil- 
lation of all particles in phase and amplitude about 
each particle's equilibrium betatron phase and ampli- 
tude.' The oscillating displacement must be a stationary 
solution of the undriven collidins beam system. The 
only modes easily observable are ones with a large 
center of charge component in either bunch. Also only 
modes in the z direction will be considered here. 

Parametrization of Tune Spread 
The collidins beam system can be described as an 

equilibrium charge distribution in each bunch, and 
small oscillations about the equilibrium distribution. 
The equilibrium charge distribution generates an elec- 
tric field EZ which is odd in xz. This field produces 

a force which is quadrupole to leading order. If the 
tune shift due to this quadrupole is small compared to 
the fractional tune in the z direction, then the higher 
order multipoles of the field can be averaged over a 
betatron cycle to give an equivalent quadrupole force 
which is a function of the betatron amplitude in the z 
direction'. Therefore, each particle has a betatron 
frequency RZ depending on its betatron amplitude xoz. 

The betatron frequencies now occupy a continuum. Since 
it is assumed that there are no important lattice res- 
onances, the z and x direction betatron motions are 
uncorrelated. Then the multipole structure of Ex in xx 

can be averaged independently of the multipole structure 
in the z direction. The result is that the z direction 
betatron frequency is R(xox,xoz), where xox,xoz are the 

betatron amplitudes in the x and z directions. 

Coherent Bunch Coupling 
The small oscillations of the charge density 

generate an electric field 6EZ which is even in xz, and 

oscillates at some characteristic frequency w. This 
field produces an oscillating dipole force to leading 
order, and the higher multipoles can be averaged in the 
same manner as the equilibrium field to give an equiv- 
alent oscillating dipole which is a function of xox~xoz. 

*Work supported by the National Science Foundation. 

**Laboratory of Nuclear Studies, Cornell University, 
Ithaca, NY 14853 

The result of the averagings is that small coher- 
ent motion of the nonlinear system can be represented 
as an infinite set of coupled linear oscillators with 
a distribution of resonant frequencies corresponding 
to the particle betatron amplitudes. The equations of 
the equivalent linear system are linear integral eaua- 
tions where the coherent frequency appears as an eigen- 
value. These equations can be solved by evaluation of 
the matrix elements of the integral operator in a basis 
of orthonormal functions, and solving the resulting 
matrix equation. 

Solution 

Single Particle Motion 
Let x ox,xoz be the equilibrium betatron amplitude 

of a given particle, and let x0 be the amplitude of a 

small coherent oscillation. The instantaneous dis- 
placements are given by 

x = XocosRt , x = Xocoswt (1) 

Also define dimensionless coordinates a = X/V'% , 
ao= x0/J% . Henceforth, the two colliding bunches 

will be assumed to be e+ and e-, and a superscript Will 
be used to indicate motion in a specific bunch. The 
sinqle particle equation of motion is that of a driven 
harmonic oscillator with a small nonlinear perturbation 

;; t px+ = 
02 

-eIf(x:,x;)x; +e26x~(x~,x~)coslllt (2) 

The identical equation with + and - will also be 
assumed. f and 6x are perturbing functions. f 
contains the nonlir(ear structure of the force due to 
the equilibrium charge distribution, normalized such 
that f(O,O) = 1, and 6x0 is the effective displaced 

charge of the e- bunch as seen by a particle in the et 
bunch. 6x- depends on the integral of x- over all 
amplitudes? 61 is the single particle 'betatron fre- 
quency in the 'z direction. 

Charge Density and Fields 
The static charge density is 

dQ(ax,az) = eNp(ax,aZ)daxdaZ 

daxdz) = i Exp(-al -ai ) 

The resulting equilibrium field in cgs units is2 

E = 2eN 
z E f(ax9az)xz 

x z 

f =$ Exp(-ai)Erf(aZ)/a, 

(3) 

The field due to coherent oscillation requires 
integrals over both the betatron amplitude and instan- 
taneous displacement. The required charge distri- 
bution is 

dQ = eNo(aox,aoZ,ax,aZ)daoxdaozdaxda, (5) 

da ox~aozpax~az) = 4aoxaozExp(-a~x-a~z) 

?(a:, -a;)+(,&-ai )” 

The z component of the field acting on a particle at 

xl,x: due to a charge element at x;,x; , where dQ is 

defined in (5),is 

dE; = 
2dQ(a~x,a~z,a;,aj)(x~-x;) 

(X;-X;)2t (x;-x;)2 

(6) 
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Define dGEz to be the change in field due to a displace- 
ment of dQ by x. 

d6E; = x-(aox,a,z) 4 (dE;) (7) 
ax* 

The differentiation is performed with respect to xt 
instead of xi because the charge in dQ is constant: 
so p must not be differentiated. The derivative 
does not exist at the singularity of dEl but this can 
be handled by doing the integral over ax first, and 
using ox>>u 

Z m 

daoxdaozP(aox,aoz,a~,a~)x-ca,,,a,,, (8) 

define 0 co 

t t 
Gx-(ax,az) = 7r daoxda,z,(a,x,a,z,a:,a:)x-(ao,,a,z) 

0 (9) 

(10) 

where f is defined by (4) and (ll), and 

AQ(O,O) = & 
0 

Integrating (14)3 

Fx(aox) = Exp(- %) I,&& 
2 

(15) 

(16) 

FZ(aoZ) = Exp(- atz) (IO&$ + I&) ) 
2 2 

where IO , II are modified bessel functions. 

Coherent Motion 
Note from (13) that <xoz> and <1/1,> oscillate about 

equilibrium with frequency &: and that the peak phase 
displacement is not proportional to the peak amplitude 
displacement as in a linear oscillator. Define u and v 
to be displacements of amplitude and phase from the 
equilibrium values xoz and $z 

Note that for x constant, 6x = X, and that (10) is 
consistent with (4). 

Averaging 
Using the method of Krylov and Bogoliubov', a 

solution is supposed for a given particle, of the form 

X X = xO,cOs$, , xz = xozcos~z (11) 

Then expressions for xoz , $, can be found 

‘-I 5 
x =-CT- oz 

0 

sir@: f(a~,a:)x~zcosJ;: 

3 + r sin$: Gx~(a~,a~)coswt 
0 

(12) 

$i = - 2 cos$: f(az,ai) * cos+; 
0 

t-2- 
x+ n 

cos$l Gx$ax,az)coswt + a0 

oz 0 

Averaging over one cycle of J, 

2Tl 

E2 .xiz> = - F(2 )-2 sinAwt 

0 // 
sin'$z bx~(a~,a~)d$,d~, 

O 2v 
(13) 

// 

cos*JI, f(ai ,a~)d$xd$z 

0 

2a 

- E2(2# 

xizQo ii 

cos2JIz Gxo(a:,az)d$xd$z coshwt 

0 

where AU = w - ti is the beat frequency between the 
averaged equilibrium betatron frequency s2 and the coher- 
ent frequency w, and R = a0 + AR(aox,ao,). 

L 1, 

AR(a ox~aoz) 
J 

d$,dJIZ ~0s z f(ax,az) l(2n) (14) 

0 

= An(O,O) Fx(aox) Fz(aoZ) 

u(a ox,aoz) = 
I 

<xoz>dt = uocosAwt (17) 

da ox~aoz) = / * <QZ>dt = -v,sinA& 

u and v contribute to x according to their projections 
on the spatial axis of phase space 

x(a ox'aoz) = u,cosRt cosllwt - v,sinR sin&t 

discarding terms that will average to zero over Rt 

x(a ox,aoz) = coswt (u,cos%t + v,sin%t ) 

xotaox saoz 1 q -$-(a: u. + (aiz-a:) v. ) 
oz 

(18) 

(19) 

To evaluate el and e2 , consider the case where 

a ox and aoz are small so that f(ax,az) = 1, and also 

An(a oxlaoz) = Aa(O,O) , Gxo(ax,az) = x,(0,0) . Let 

X = x + X be a complete solution. Using (l), 

i + C$X = (“; - R2)x + (S$ - w2)x 2 -2R,(ARx + Awx) (20) 

For a linear quadrupole, the shift in betatron frequen- 
cy is, assuming the equilibrium density p 

B;r,Nn 
AQ(o,o) = ye (21) 

0x7. 

where n = 2 is the number of collisions per revolution, 
To is the revolution period, re is the classical radius 

of the electron, 8; is the beta function at collision, 

and y is the energy. From (15) and (Zl), 

(22) 

For a dipole shaking field, the shaking response is 

t 
x0 = 

B;r,Nn 

yToaxaZAw sx,(0'0) 

From (2) and (20), keeping only terms in X, 

(23) 
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Zn$oxt, = E26X,(0,0) (24) 

E2 = El = 2RoAR(0,0) 

Combining equations (5),(9),(13),(17),(18), and (19), 
and changing variables from $z to aZ, a system of 

integral equations is obtained. 

c.3 

AU $(aix,ai,) = 7 

ii 

da~xda~ZA(a~x,a~x)B(a~z,a~z) * 
0 

0 (25) 
p(a,,)p(a,,)x,(a,,,a,Z) 

Aw = w - Do - AS$aoxraoZ) 

p(ao) = 2a, Exp(-ai) 

Min(a,,b,) 

A(a,,b,) = $ 
I- 

da (a:- a2)-%(b;- a2)-% 

‘0 

Min(a,,b,) 

B(a,,b,) = $ 

/ 

da (a;- a2 

0 a2 (a:-a') (a:-a')(bi-a') 1 
a4 a'(bi-a*) 1 

A and B can be evaluated analytically in complete 
elliptic integrals. Define 

A = (w - n,)/AQ(0,0) (26) 

5, = Fx(aox) , 5, = FZ(aoz) 

ANa ox,aoz) = AR(0,0)5,5, 

changing variables in (25) 

1 

x ;t(s;,s;) = $5; &$.5;) -h 
(27) 

Expand in an orthonormal basis. A suitable basis is a 
product of legendre polynomials on 5,,5, . 

YN(r-) = J2mt-l nix Pm(25,-1) P&25,-1) 

G= jdI'YN$ 

%iN = // 
dr+dr-K-(I'+,r-)YM(I+)YN(I=) 

ZMN = 
I dr c.x~zYMM(r)yN(r) 

so equation (27) becomes 

h x, =[m2z; -2TFi;] % 

where I' = (c,,E,) , dr = dE,dS, , and the integrals 

over dI are over the unit square. 

(28) 

The beam-beam transfer function may also be calcu- 
lated by adding a driving vector to the right hand side 
of (28) ,and setting w equal to the driving frequency. 
Then x(w) can be obtained for a given shaking config- 
uration. 

Results 

The matrix system was truncated to 60 x 60 for 
numerical solution, This involves severely truncating 
the expansion in each degree of freedom. The expansion 
in 5, was truncated to five dimensions, and the expan- 

sion in 5, was truncated to three dimensions. Varia- 

tions of the truncation are used to estimate the error 
induced by the truncation. A mode with odd symmetry 
between electrons and positrons, and very little 
coupling to the truncated degrees of freedom appears 
at X = 1.34 with equal bunch sizes and currents. 
Additional modes with moderate coupling to truncated 
degrees of freedom and a significant center of charge 
motion appear at A = 0.79 with odd symmetry, and at 
h = 0.63 with odd syannetry. Also, a-collection of 
modes with even symmetrv aooear close to X = 0.095 . 

Since the eigenvalies'bf 1.34 and 0.095 seem to 
correspond to lines observable in CESR, the dependence 
of these on asynmetry between the bunches was calcu- 
lated. Define 

p = (1+/r-k q = (a;/@ 

Then p was varied with q = 1 , and q was varied with 
p=l. The results are summarized below. 

P (q=I) x even x odd 

::!Y 
0.097 1.340 
0.096 1.349 

1.2 0.095 1.375 
1.4 0.088 1.460 
1.6 0.085 1.573 
1.8 0.077 1.704 
2.0 0.075 1.846 

9 (p=I) x even "odd 

1.0 0.097 1.340 
1.1 0.096 1.347 
1.2 0.095 1.368 
1.4 0.100 1.438 
1.6 0.110 1.536 

::k! 
0.120 1.650 

1.772 

The matrix with q = 2.0 had no eigenvalue corresponding 
to a strong even mode with X near zero. This is prob- 
ably due to the matrix truncation effects, which 
worsen with q. 

For Gaussian, ribbon shaped beams, the luminosity 
is proportional to An(O,O) for motion in the thin 
direction of the beam. Using (21), 

L= 
ToI2 

TOY 

4ire'axoz = - AQ(O,O) 1 8aereB; 
(29) 

Therefore, observed tune splits should be linear in L/I. 
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