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Abstract 

A computer program which models the behavior of an 
intense beam of charged particles in a periodic focus- 
ing system is described. The program solves for elec- 
trostatic fields in two dimensions, i.e., the x-y co- 
ordinates of a typical electrostatic quadrupole lens, 
including space-charge fields due to the presence of an 
array of macroparticles. Adjacent drift sections and 
quadrupoles are defined by "hard edges", i.e., no 
fringing fields. However, longitudinal changes in 
electrostatic potential are used to calculate applied 
axial fields. Particles are tracked through short seg- 
ments for which Poisson's equation is solved to update 
the self-fields. Examples shown include the transport 
of an intense (space charge limited) beam in a periodic 
structure and the optics of a matching system between 
ion source and transport system. The program is equal- 
ly applicable to magnetic or electrostatic focusing. 
In either case it accounts for space-charge image field 
effects which are frequently ignbred in 
of this problem. 

other treatments 

Introduction 

Interest in using intense beams of heavy ions to 
implode and ignite inertial confinement fusion pellets 
has greatly stimulated interest in the transport of in- 
tense beams of charged particles. Several papers'-lt at 
the last Particle Accelerator Conference dealt with the 
theoretical and numerical understanding of the stabili- 
ty limits to the transport of high intensity beams in 
vacuum, i.e., without neutralizing the space charge. 

The present effort is not intended to break new 
ground in the understanding of these stability limits. 
Rather, it is an effort to provide a general purpose 
tool that can be used to design and study transport 
systems such as the matching system between an ion 
source and the accelerator. Since low-energy, low- 
charge state heavy ions respond much more effectively 
to electrostatic focusing than to magnetic focusing, the 
emphasis has been on developing a program suitable for 
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studying electrostatic quadrupole transport systems. 
Some stability studies have been made with the 

program, primarily as program checks, notably the case 
of a matched K-V distribution in a system with ao=600 
(phase advance without space charge) depressed to 
0=24' by the presence of space charge. This case was 
extensively studied by Laslett.5 We found that beams 
behaved as expected under these conditions and were 
thus encouraged to experiment with beams mismatched in 
either phase (reduced divergence) or configuration 
space. 

Below we describe the program and illustrate its 
operation with selected examples from problems related 
to studies presently underway at LBL to develop a li- 
near induction accelerator as the heavy ion fusion ac- 
celerator. Because the induction linac is well matched 
to a very high current, short pulses, it was an early 
candidate as a fusion driver. The problem of trans- 
verse confinement of the beam, particularly at low ve- 
locities, has led us toward the structure, illustrated 
in Fig. 1, of many rods which are the elements of mul- 
tiple electrostatic quadrupoles. This concept is the 
induction linac version of the MEQALAC structure de- 
veloped by Maschke.6 Many small beamlets, each of mo- 
dest current, are accelerated together in a large 
bundle. The beamlets only "see" each other briefly at 
the acceleration gaps where the transverse space charge 
fields are attenuated by the plates with the multiple 
apertures. 

A cross section of the multiple beam structure is 
shown in Fig. 2. Figure 3 shows the equipotential 
lines within an electrostatic quadrupole for a single 
quadrant of this structure. The beam is transported, 
with quadrant symmetry, in the area nearest the origin. 
The flattened rod faces provide a nearly linear field 
to all four adjacent quadrants. 

Program Description 

The program is a modified version of the electron 
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trajectory program developed by W. B. Herrmannsfeldt.7 
The original program solved by numerical integration 
the relativistic equations of motion (Lorenze force 
equation) to define the particle trajectories along an 
ion gun axis. Charge deposited along macroparticle or- 
bits defined a charge density that was used to solve 
Poisson's equation for a potential distribution which 
included effects from both applied electrode voltages 
and beam space charge. This solution was then used to 
recalculate the orbits. This process of orbit tracking, 
charge deposition, and potential solution was iterated 
until convergence was obtained thus giving a self- 
consistent solution. 

The modified program used here can be understood 
in terms of Fig. 4. For the original program the z-axis 
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Fig. 4. One-half period of a transport structure. 

would be the given axis; Poisson's equation would be 
solved in the r, z plane after particles were tracked 
from the entrance to the exit of the structure. The new 
version solves Poisson's equation in the transverse x,y 
plane as particles are tracked through the structure, 
their principal motion being along the z-axis. 

The transport structure (Fig. 4 shows a half- 
period) is subdivided in the longitudinal (z) direction 
into short sections called fractional elements (FE). An 
example of an FE is shown in Fig. 5. The transverse 
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Fig. 5. Single fractional element. 

projection of the electrode within an FE is shown in 
Fig. 3. The initial condition of a collection of par- 
ticles at the entrance to the FE is used to define the 
beam charge density in the transverse x,y plane. A 2- 
dimensional Poisson's equation including space charge 
effects is solved to obtain the potential $(x,y) used 
throughout the FE. Macroparticles are then moved 
through the FE along trajectories found by numerically 
integrating the relativistic Lorenze force equation. A 
3-dimensional electric field is used; the x,y components 
are the gradient of the potential $(x,y). The z compo- 
nent is obtained by assuming that the potential drop 
between adjacent FE's is experienced by a macroparticle 
over the length of the FE through which it is being 
tracked. For a hard-edge approximation this is equiva- 
lent to a linear potential drop, or rise, in the gaps 
over an edge width of one FE. This process is repeated 
for each FE in the system; charge distributions being 
updated and Poisson's equation being solved at the en- 
trance to each FE. 

The macroparticle beam used to establish a charge 
distribution is initially defined by drawing a statis- 
tical sample from a given distribution. Runs presented 
here used a K-V distribution of specified width in 
transverse phase space (x,x', y,y'). If desired, an 
initial momentum spread 6P,/P, along the longitudinal 
coordinate can be specified. 

Charge deposition is done by locating the macro- 
particle in the x,y plane mesh and distributing charge 
to each of the four neighboring mesh points. 

Beam behavior is defined by a vector of macropar- 
titles that contains, for example, the position and ve- 
locities of the sample. Marker particles can be tracked. 
Histograms showing projections in transverse phase and 
configuration space are calculated. Also, moments are 
calculated along with the unnormalized emittance in both 
the x and y space. 

The resolution of the grid used to solve Poisson's 
equation, i.e., the mesh size, influences the accuracy 
of the solution. The number of macroparticles must be 
sufficient to insure that the space charge is well de- 
fined. The integration step size must be adjusted to 
give sufficient accuracy to the macroparticle orbits, 
and the FE cannot be too long. These quantities, mesh 
size, sample size, integration step size. and FE length 
all combine to determine the computing time needed per 
machine period. Sample sizes of 500 macroparticles 
yielding about 5 - 10 particles per c&i, integration 
steps of y 70 per machine period, and 16 FE per machine 
period have yielded reasonable runs. 

Extensions 

By solving a 3-dimensional Laplace equation with 
boundary conditions that include the applied voltages, 
it is possible to furnish analytic expressions for the 
applied fields.5 By using the program to include the 
effect of space charge and solving Poisson's equations 
with a constant, e.g., zero, potential on the boundaries 
and superposing the analytically defined fields, orbits 
of macroparticles can be tracked in fields for which 
only the space charge effects are calculated in a 2- 
dimensional manner. This would allow the accurate in- 
clusion of specified fringe fields. 

We also note that in principle, multiple beams 
(see Fig. 2) can be handled by the program. Whether 
this is practical depends on the questions asked of the 
Program results and the particular geometry at hand. 

Examples 

In Fig. 6 are plotted relative emittances as a 
function of machine structure periods. One matched and 
two unmatched beams are taken through 17 full FODO 
structure periods. In one case the emittance (diver- 
gence) is two times less and in the other ten times less 
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Fig. 6. Relative emittance growth of 
matched and unmatched beams. 

than the matched value. The matched beam shows little 
emittance growth, whereas the unmatched beams show 
growth toward the matched value. 

Typical structure parameters used for the matched 
and mismatched beams of 0.5 MeV Cz ions were: focusing 
strength K=27.252 mm2, quadrupole apertures Aq=3.4 cm 
and voltage VQ= 15.752 kV, half period length L= 30 cm, 
and packing fraction 0=50X. The matched beamlet para- 
meters were: current per beamlet 1~30.38 mA, unnorma- 
lized emittance co= 17.596cm-mrad, with beam size of 
x=20.53 mu and y-12.79 mm. 

Figure 7 shows a matching system that takes a beam 
from an ion gun to an electrostatic quadrupole periodic 
focusing system. It was designed* using only the en- 
velope equation for the K-V distribution to account for 
space-charge effects. The results from this program 
are in substantial agreement with these envelope calcu- 
lations, giving some assurances that the two approaches 
give consistent results. 
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Fig. 7. Matching section between ion gun and periodic structure. 
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