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Introduction 

In this paper we study vertical coherent instabil- 
ities in bunched beams with an emphasis on single 
bunch instabilities in which the growth time is less 
than the period of synchrotron oscillations. Single 
bunch instabilities have been studied by many 
people, lb3 however, in most treatments the standard 
assumption is that the coherent force can be treated as 
a perturbation compared to the synchrotron force. This 
simplifies the problem greatly since in this way an 
individual synchrotron mode is decoupled (or coupled 
only to a neighboring mode). In the regime of fast 
blow-up (growth time < synchrotron period) this 
assumption is not valid, and it is therefore necessary 
to include the coupling of all the synchrotron modes. 

In addition, since the beam is bunched, all the 
revolution modes are coupled. This is true because the 
perturbed distribution of particles, $J~, must be 
bunched azimuthally at least as much as the unperturbed 
bunch distribution, q,. So the solution must lead to a 
wave packet rather than a plane wave. This introduces 
a fundamental complication into the problem in that we 
must solve an integral equation rather than a 
dispersion relation. 

To study the problem quantitatively: 
1. We introduce the Vlasov equation with single 
particle equations of motion, and reduce this to 
a* integral equation. 
2. We restrict ourselves to the following regime. 

A. Im(w) > ws. 
B. Frequency - wc, the cutoff frequency. 
C. Broad band impedance + space charge. 
D. Width Z,(w) > l/bunch length. 

3. We solve the integral equation in this regime 
analytically. 
4. We apply the results to a calculation of the 
stability of the injected bunch at ISABELLE. 

The Equations of Motion 

We are interested in vertical coherent instabil- 
ities. Since the coherent forces are typically much 
less than the focusing forces, we look for growth rates 
which are much less than the betatron frequency. CO"- 
sistent with this assumption, we replace the true beta- 
tron motion by harmonic oscillations. In order to in- 
clude the effect of synchrotron oscillations, we lin- 
earize this motion. With these assumptions the single 
particle equations of motion for our problem become 

i' 2 + ws T + . . . = 0 (1) 

j; +wj:(l+Zai)y=w) (2) 
9-w t 

T = $/W, = ---L 
WO 

, 9 = azimuth, f = 3 = n 9 
wO 

(3) 

a = (1 - 5/n), n = 5 - +, w Y 
= VWO' ,ry =!!+I? 

yT ' 
v P (4) 

Oo' WY' and w 
frequency, an 2 

are the revolution frequency, betatron 
synchrotron frequency respectively, and 

F(r,t) is the vertical coherent force. The first 
equation gives the synchrotron motion while the second 
gives the coherently forced betatron oscillation. 

The coherent motion of a bunch of particles is 

given by the Vlasov equation. This can be written 

2 + [JI,H] = 0 (5) 

*Work performed under the auspices of the U.S. 
Department of Energy. 

where J, is the distribution function in phase space, 
[ , ] is the Poisson bracket, and H is the 
hamiltonian which yields equations (1) and (2). In 
particular we are interested in stability, so we 
linearize the above equation by the substitution 

which yields 
$ = $. + blewiwt (6) 

-iWl + [~J~,H~] + [+,,~~,I = 0 (7) 

where H is the single particle hamiltonian, Hc is the 
coheren: hamiltonian, H = -y F(r,t), and [qo, Ho] = 0 
The coherent Eorce in E:.(2) can be written with a 
transverse impedance. 

w = 7 dk G(w+kw,)D(k)e 
i(koor-mt) 

(8 1 

where G(w) = ie2m$ZI(m)/(2nm yc) 0 (9) 

and D(k) = l/a 7 e 
-ikmd 

d ~$~(~.~~,r,p,)dydp~drdp,. (10) 
This force is valid for a short wake field (less than 
one turn). If we have a long wake field, then the 
periodicity in -t becomes important and we find a sum 
(Fourier series) rather than an integral. 

Before substituting into the Vlasov equation it is 
convenient to introduce action angle variables: 

y = qqcosey’ T = JzJ,lw,czcose, 
(11) 

PY 
= - -sinBy, p, = - ~sin0,. 

If we let? (J,) = ~2Js/w,c2 and use equation (7), we 
find the Vlasov equation for our problem 

a% a% -io*l + wy(l-aosYsinBs)-8B- + ws r 
Y S 

-$-sine 
F(?cosB,) 

Y ym = 0 
Y 

(12) 

where we have again linearized the synchrotron oscilla- 
tion. Our task now is to solve this equation; to find 
the eigenvalue w, and eigenfunction $l. If any solu- 
tion has Im(w) > 0, then the system is unsta=. The 
growth rate in this circumstance is just Im(w). Recall 
that [qo,Ho] = 0; this means that JI, = +,(J,,J ). In 
the coasting beam case q. = Jl,(p,, Jy) since IT t ere is 
no longitudinal focusing. It is this difference that 
leads to the coupling of different revolution modes. 

We expect an integral equation due to the form of 
the force so we seek an equation for D(k) of the form 

IS(k) = 7 dk'A(k,k')fi(k'). 
4 

(13) 

Since equation (12) is a linear integro differential 
equation, such an integral equation should exist. 
In the coasting beam limit this must reduce to a 
dispersion relation of the standard form. Let us 
search for a solution in the neighborhood 

of w - 
-iBy 

-w y, i.e. JI = Re . 1; we define 

i = 1 I Y Jlldydpy = n I Ty RdJy (14) 
0 

then from Eq. (10) we have 

D(k) = l/:n $fe 
-ikWo’ 

dr dpT. (15) 

This form for D(k) suggests that we multiply Eq. 
(12) by nJZ[Jy/wi and integrate over Jy. This yields 

(-i(A-awyysine) i&} f = 
-ipoF(?cOse) 

&YWS 
(16) 
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where X Z (w f w )/w and we have dropped the s sub- 
script. At thisYstage one could introduce synchrotron 
harmonics; however, since we are interested in shifts 
in frequency which might be large compared to the syn- 
chrotron frequency, we will take a different approach. 
It is easy to see that the periodic solution to Eq.(16) 
is: 

f= 
-ieih6+iaoy?cos6p 

(e-2n1a-l) 
o ei2n Fg;;ze') c17) 

.-iXB'-iaw Yi~o.sB'~~, 

The right hand side of Eq. );17) is a linear functional 
of D(k). So it is straightforward to show with Eq. 
(15) and (17) that after some simplification the kernal 
in Eq. (13) becomes 

G(w+p'wo+aw ) 
A(P,P') = 4nw-y- y x (18) 

(S1 ) 0 
2 .A f" eixt 7 ?-dT" ;o;?) Jo[Kpp,(t)Wo~] 

0 

where Kpp,(t) = [(p-p')2-2pp(cost-l)]1'z (19) 

B(p) = D(p + av), and 7 r"d?po(?) = N. (20) 
0 

The above result follows exactly from the Vlasov 
equation in Eq. (12). The problem has been reduced to 
the solution of an integral equation with eigenvalue 
equal to unity. The eigenvalue of Eq. (13) will have X 
as a free parameter, so that after the integral 
equation is diagonalized we are left with an equation 
of the form 1 = E(A), where E(X) is the eigenvalue. 
Thus, after diagonalization, we obtain an equation of 
the same form as the normal dispersion relation in 
coasting beam theory. In order to gain more insight 
into the integral equation, let us now specialize to a 
gaussian distribution for PO. 

Gaussian Bunch, High Frequency Fast Blow Up 

We select a distribution function given by 

which is gaussian in r and ;. Physically this is 
gaussian in azimuth and in Ap/p. Ihe last integral in 
Eq. (18) can be done easily with this distribution: 

= Ne-(P-P')2ug/2 + o&'(cost-1) 
(22) 

where ~~=ow~=rrns spread in azimuth. If we set 
0 + aw Y = - wys/rl 5 -ws, the kernal can be written 

A(p,p') = N Gw e 
-(p-p')%2/2 

' x B(PP',A) (23) 

with dt. (24) 

Notice that the mode coupling in the kernal is due 
mainly to the Fourier transform of JI,, as expected. 
The factor B plays the same role as the dispersion 
integral coasting beam theory; however, it also 
contains the development in terms of synchrotron 
harmonics. B can be written exactly in terms of a 
series with modified Bessel functions as 

B-e 
-PP'o; 

The usual approaches consider one term in this 
sum; however to study the regime of fast blowup 
(Im(o) > ws or In X > l), we must, in principle, keep 
all of the terms, i.e. the entire integral B. 

Now we would like to consider a broad band 

impedance at high frequency. This should lead to some 
simplification since this impedance is approximately 
constant over a broad range. Let I' be the width of 
G(w) and let G be peaked at the cutoff frequency, 
We will consider the case when the bunch length is 

wc. 

much longer than the wakefield, i.e. 

r >> l/a, wc >> l/o . (26) 

In the regime of fast blow up (ImX > 1) it is easy 
to see that the last 2 factors in Eq. (23) are very 
small when p & p' are of opposite sign. This means 
that we need only consider the coupling of like fre- 
quencies. 
[ 

This is in contrast to the head-tail regime 
one term in the sum in Eq. (25)] where opposite and 

like signs of p & p' contribute equally. If we now 
search for a solution to equation (13) in the neighbor- 
hood of the cutoff frequency, then the kernal in Eq. 
(23) is the product of a slowly varying function, 
G(p'w -w5) x B(pp',X), and a sharply spiked function, 
exp[-?e-p')2u20/*l, which we approximate by 

NG(w ) -(p-~')~o*/2 
A(p,p') = 2& e 0 x B(P;,~) (27) 

YS 

with p, = (wc + wC)/wo. We should restrict the range 
of integration to be over the width of G; however, 
since T >> l/o, we can extend the range of integration 
with little error. In this case Eq. (13) can be solved 
by 6 = exp(-ipw-y) and we find 

1 = .% B(p,2,X) e e-y2’202 . (28) 

Since we are searching for instability, select the 
largest eigenvalue (y = 0); then using Eq. (9) we find 

1 = ie w B(pz,X) 
0 S 

where I peak = eNf(of%). 

(29) 

(30) 

We see that the solution of the integral equation has 
brought a factor of the local current (the peak current 
since we've used the largest eigenvalue). This makes 
sense physically because a broad band impedance cor- 
responds to a very local interaction within the bunch. 

We have solved the integral equation in this 
regime, and we are left with a relation which is form- 
ally identical to the normal coasting beam dispersion 
relation. In the next section we study this dispersion 
relation and apply these results to a calculation of 
the stability of the injected bunch at ISABELLE. 

The Dispersion Relation 

It is convenient for the following discussion to define 

Reid = ieloeakZl(wc) 
moyc4nvws and A2 f p:u; . (31) 

With these changes we may rewrite Eq. (29) 

l = Reie(e.nii-l) peiat eA2(cost-l) . (32) 
0 

At large growth rates (ImX >A), we can take the leading 
term to obtain 

for Im(w/ws)>A . (33) 

It is straight forward to show using Eq. (32) that the 
growth rate is bounded; 

for r < 1, Im(w/os) ( l/x In (-& ), (34) 

where r E Re "2nIo(A2) = RJz;i/2A for A >> 1 (35) 

and Im(w/ws) < R. (36) - 
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POT procon macnLrleS L.l Lb Lyp)IC*LIy IdL&C. 111 LAS. I WL 
plot the 2 upperbounds evaluated for A = 35 which cor- 
responds to the value for ISABELLE. As you see, there 
is a sharp rise at the intersection of the 2 bounds. 

In order to obtain more precise results we must 
compute B. The most useful approach at this point is 
to plot a "stability diagram." From Equation (32) we 
have 

b(A,X) = reie where & = 2AB(Az,h)//% . 37) 

If we now plot a map of b in the complex plane 
identifying contours of constant growth rate, given 
the current and the impedance of a machine, we can 
find the point in the map which solves Eq. (37). 
Rewriting in terms of conventional quantities we have 

ie1 
b(A,X) = peakZl(Wc) 

4vJ?;;m,Yc Iwsu(Wc*~)I * 
(38) 

IO 

d 
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H 
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Fig. 1. Growth rate upperbound and growth rate vs 
current. 

In Fig. 2 we plot contours of constant Im(A) for 
b (35,X). With the aid of this map we can plot the 
growth rate vs. current for any impedance. To 
illustrate this, consider an impedance which has equal 
real and imaginary parts. If we draw a ray in Fig. 2 
at 45", then the points of intersection yield a graph 
of B vs. r, or B vs I/Ith, Ith being the threshold 
current corresponding to r = 1 and 8 = Im(w/ws). 

The curves given in Fig. 1 illustrate the above 
procedure. They have been extended below Im(x) = 1 in 
order to suggest the slow blow-up regime; however, in 
order to calculate the transition to the slow blow-up 
regime correctly, one must take the negative 
frequencies into account also. 

1.0 
REALCb(A,Xll 

2.0 3.0 

Fig. 2. Stability Diagram: Map of b(A = 35,X). 

Discussion 

The "threshold" for the instability which we have 
here is given by 

e1 
l= peak'Zl(wc)l 

4Jz;i v n oEIWc+WSImoYc 
where no,=n( ~,,psu. (39) 

This is the threshold given by the unit circle in 
Fig. 2. As you see, the actual threshold for a given 
impedance will be at somewhat larger current due to the 
shape of the map of b in Fig. 2. 

Notice the "phase transition" in Fig. 1 from the 
slow blow-up regime to the fast blow-up regime. This 
phase transition becomes the coasting beam threshold as 
ws + 0; however, for ws finite there will be a 
region of slow blow-up due to the head-tail effect' 
which we have suggested by extending the curve to 
Im(X) < 1. (A detailed analysis of this transition 
will be given by the first author in an upcoming 
doctoral dissertation.) 

To conclude, we take the impedance at ISABELLE to 
be a broadband impedance plus space charge. In order 
to estimate the broadband impedance we let Z,,/n = 10 R 
and scale the transverse impedance according to 

Zl = * &f [ 1 _ (~o,b)z]2 ' (40) 

where x. = beam center and b = chamber radius. 
If we apply the above results, we find that for 

the injected bunch on the injection orbit I/Ith = 2. 
If we follow the curve in Fig. 1 corresponding to the 
ISA impedance, this leads to a growth rate = 4msec 

cws = 40/set). This result is, however, sensitive to 
the location of the beam center. If the beam is cent- 
ered, the growth rate is in the slow blow-up regime. 
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