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Abstract 

When the beam-beam force is approximated as a 
periodic &-function non-linear potential kicks, it is 
expected to excite a continuum(density of rational 
numbers) of resonances. The totality of resonance with- 
in a narrow "width" of the betatron oscillation tune 
contribute to a diffusion-like amplitude growth as if 
the kicks are random. A semi-quantitative formulation 
is derived and applied to electron colliding beams. 

Introduction 

Non-linear dynamics is fascinating because a pure- 
ly deterministic system can exhibit apparently stochas- 
tic behaviors, thus leading to topics1 such as singular 
mapping curves, Arnol'd diffusion, RAM theorem, over- 
lapping resonances etc. But, so far, the relevance of 
these inherent features of non-linear dynamics to the 
observed behaviors of colliding beams has not been 
established. This prompted some investigators to sug- 
gest other approaches293 to an explanation of the beam- 
beam effects. Moreover, on the conceptual level there 
are two rather strong arguments against the straight- 
forward application of non-linear dynamics. 

1. The observed beam-beam effect is an intrin- 
sically statistical phenomenon. The exact temporal 
evolution of the non-linear motion of a particle, 
stochastic as it may be, is nevertheless time- 
reversible, whereas the beam-beam behavior exhibits 
irreversible diffusion-like characteristics. One 
should at the very outset introduce statistical 
averages into the equations of motion - a process 
similar to the transition from the Poincare equation 
to the Liouville equation. 

2. Real physical systems have noises, Although 
the effect of noise cannot be the whole picture it 
must form an integral part of the formulation. 

In the following we sketch an attempt to formulate 
the beam-beam interaction in a statistical manner with 
noise as an integral part. 

The Physical Picture 

We consider the simplest case of a weak positron 
beam colliding head-on with a strong bunched electron 
beam. Reduced to bare essentials we have a single 
positron performing a stable linear one-dimensional 
transverse oscillation perturbed by a series of 
equally spaced extremely non-linear &-function kicks. 

The increment of the action invariant W = 
y~~+2crxx'+Ex'~ due to a kick Ax' is 

2 Aw = @(Ax') +2(ox+5x')Ax'. (1) 

The kick can be expressed in terms of the "tune shift" 
5 through 

E=Bax’ 
4rr x Or Ax' = 4x5; . 

*Operated by the Universities Research AssociationInc., 
under contract with the U.S. Department of Energy. 

If the successive kicks are random the second term in 
AW averages to zero and we get 

<AW> = ~<.(Ax')~> = (4~<)~ + = (4@)2 y (2) 

or 

<A!$>=+ (4x5)2 = 0.0079 

where the last number corresponds to 5 = 0.01, aneasily 
attainable value on all electron colliders. This is a 
very large number indeed, giving an e-fold increase in 
W in only C--&9 = 127 kicks. The only reason that the 
positron mot on can be stable is because these strong 
kicks are not random but periodic, and all evils are 
concentrated into resonances. On-resonance the effects 
of the kicks add coherently and the oscillation ampli- 
tude grows proportionally to the number of kicks. With 
random kicks the amplitude still grows as the square- 
root of the number of kicks. Off-resonance the effects 
of the kicks cancel systematically to give zero ampli- 
tude growth. The off-resonance cancellation is essen- 
tial for the survival of the beam and is very exacting, 
especially for the very high order resonances. Any ir- 
regularity will upset the delicate cancellation. These 
time-domain descriptions are illustrated in Fig. 1. 

For colliding beams both the non-linearity and the 
harmonics of the kicks extend to extremely high orders. 
The tune-space is covered dense by resonances(density 
of rational numbers), and the oscillation tune sits in 
a continuum of high order resonances even when all 
strong low order resonances are avoided. In fact, 
since the electron bunches are not exactly identical 
from collision to collision the kicks are not exactly 
periodic and all resonances have some "spreads" or 
"widths". This situation is equivalently described by 
assigning a natural "width" to the tune. This des- 
cription avoids the possibility of confusing the 
"spread" of a resonance due to inexact periodicity of 
the kicks with the usual resonance width in non-linear 
dynamics. This description further suggests that the 
(small) portion of the kick-spectrum which is flat and 
equal in height to the part lying within the "width" of 
the tune will constitute a random series of (small) 
kicks in the time domain and cause the amplitude to 
grow. This is because a "white" spectrum in the fre- 
quency domain corresponds to a series of random signals 
in the time domain. The "natural width" is rather 
small, but the ever present hardware noise will contri- 
bute to the resonance spread and make the "total width" 
substantial. As described, the ultimate effect of 
noises, natural (beam) or external (hardware), is to 
take "strength" off from the resonance peaks and smear 
it in between resonances to form the "white" spectrum 
of a set of random kicks. 

Partial Quantitative Formulation 

The equation for for the y-motion of the positron 
iS 

aV y"+k(s)y = - ay 6(s) 

where the force term on the right-hand-side is 

(3) 
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expressible in closed form for round bi-Gaussian elec- 
tron beam bunches and is given by4 

. 
“L 

-J 
cm 

dt 1-e 
2 (ti-u2) 

t+u2 

roN =-- 
YpU2 

2 

t 1 1-e- k2 ys(s) 

25 
2a2 

where 

u = Gaussian standard deviation 

yP 
= --$ of positron 

mc 
-I L 

r =A-- 
0 2 = classical radius of positron 

mc 

(4) 

N = total number of electrons. 

The real electron beams are, however, not round but 
ff;; ribbons with o,>%y (x = horizontal, Y = verti- 

. Hence the vertical kicks are larger and dictate 
the intensity limit. Introducing the vertical "tune 
shift" - 

_ I 'oNBy 
=4lTyaa 

PYX 

and integrating Eq. (3) once to get the kick 
obtain 

u 
Ay'=-4ns x 

Y% 

._ & 20 
i i 
l-e yp. \;:I ay 

Ay’ we 

(5) 

The random part of these kicks in the sense discussed 
earlier will contribute to the growth of WY. From 
Eqs. (2) and (5) we obtain 

<AWy> = BY <(a~')~> = {Y2 (6) 

where 

1 
(7) 

- random part 

We drop some of the subscripts y as being understood 
and write 

(8) 

where f = frequency of kicks. The total motion of the 
positron is, then, given by 

1 

(9) 

where 

Q = growth due to quantum fluctuation 

T = synchrotron radiation damping time. 

The function F has a maximum at u = 1.26 or y = 1.59o . 
The maximum "tune shift" cm,, that can be obtained is' 
given by the condition $: = 0 at F = F,,,, namely 

(10) 

The energy dependence of the quantities are 

2 2 2 way au aE; 
Y 

1 3 
T"E, hence : 0~ E 5 , 

5 
QaE, coupled over from horizontal; 

u =E 
X 

', because ffx is aperture limited. 

This gives 

5 a: $12. 
max (11) 

The energy dependence of the maximum luminosity Lmax is 
related to that of cm,, by5 

L ma* 
@z E2 c2 a E7. 

max (12) 

Figs. 2 and 3 show the fits to the measured data from 
SPEAR6 with 

5 max = 0.01 E5'2 and L,, = 0.03 E7 

(Lmax in cm -2 -1 set and E in GeV). 

Discussions 

1. Although the meaning was clearly stated no 
mathematical procedure has been developed to extract 
the "random part" in the definition, Eq. (7), of F. 
This involves contributions from both high order 
resonances and their "spreads" due to inexact periodi- 
city or randomness of the kicks. It is possible that 
the mechanism proposed in Ref. 3 is appropriate. For 
~~~te~~~-d~~e~~~~~~t~~~~lh~~~~r, all one needs is 

dt bb 
and the proportiona- 

lity factor be energy independent. 

2. No explanation was given to the ultimate limit 
of 5,, % 0.05. This limit is not statistical in 
nature and could well be given by the single particle 
non-linear dynamics. The conventional stochasticity 
limit due to overlapping of resonances is entirely 
consistent with the physical picture presented here. 
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Fig. 1. Effects of kicks in the time domain 
(A) on-resonance (B) random 
(C) off-resonance 

Fig. 2. 
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Maximum vertical tune shift versus 
energy in SPEAR. 
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Fig. 3. Maximum luminosity versus energy in 
SPEAR. 
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