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I. Summary 

There is an increasing need for experimenters 
to have a more exact value for the kinetic energy of 
the particles used in their experiments. Values for 
kinetic energy can be calculated within about two 
percent for particles in the Bevalac using nominal 
values for the magnetic field and the radial position 
of the circulating beam. 

In the Bevalac there are several problems that 
make it very difficult to determine a more precise 
value for magnetic field. The radial field shape 
enclosed within the B dot integrating loop on the 
poletips changes as a function of field strength. 
The effective magnetic quadrant length also changes 
as a function of field strength. This causes a major 
perturbation in the radial position of the equili- 
brium orbit as well as some uncertainty in the value 
of the magnetic field. The details of these effects 
are discussed in an internal rep0rt.I 

In addition to the magnetic field value, we 
must have adequate information about the radial 
position of the closed orbit to determine a precise 
value for the kinetic energy. If we have sufficient 
information about the closed orbit, we have a known 
effective path length for the particle. If we can 
measure the transit time of the particle on that path 
we have a time-of-flight measurement. In a circular 
machine, this time measurement is a frequency measure- 
ment which is one of the most precise measurements we 
can make. A Hewlett Packard 5360A frequency counter 
can read to 1 part in 106 for a 0.1 msec read time. 
This can be extended to 1 part in 1010 for longer 
read time. With time measured to this precision, the 
error in the kinetic energy is then determined by the 
error in the determination of the closed orbit. At a 
kinetic energy of 500 MeV/amu, we can determine the 
energy to * l/4% at the Bevalac. 

II. Closed Orbit 

If the closed orbit is known at many points 
around the accelerator then the problem is straight 
forward. In a machine such as the Bevatron we only 
have access for orbit measurements ninety degrees 
apart at the four straight sections. We must there- 
fore determine from a limited number of measurements 
how well we know the closed orbit. 

Any closed orbit can be described by Fourier 
analysis in the form: 

R = R. +C(ai cos ie + bi sin ie ) 
i 

That is, the closed orbit can be represented by a 
fixed radial position R, plus a series of sinusoidal 
oscillations that are all an integral multiple of 2n 
once around the accelerator. 

Let us now examine the path length of a 
sinusoidal oscillation around a uniform orbit R, 
for one cycle of oscillation. 
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R = R. + a sin ie 

L =/de =/2n'iRde =/2"'(Ro + a sin ie) de (2) 
0 0 

L = 2~ R,/i 

The path length traveled by the sinusoidal 
oscillation just cancels and the path length is equal 
to the fixed orbit path length along R,. Looking 
at Eq. 1 describing the closed orbit, we can see that 
the sinusoidal parts average to zero in each cycle of 
oscillation and the path length around the machine is 
just equal to 2n R, plus the straight sections. 

At the Bevatron, the closed orbit is measured 
using radial probes. A U shaped target is flipped up 
into the beam. The target is adjusted radially to 
give maximum beam survival. The center of the U 
target is the radial position of the center of the 
beam. This can be repeated at each target position. 
An alternate method and the one used at the Bevatron 
is to use single finger targets at each target station 
and to record relative survival as a function of 
radial probe position. This gives the orbit eccen- 
tricity relative to the azimuthal location of each 
probe. One U target measurement must be made to get 
the actual radial beam position at one of the azi- 
muthal locations. These measurements are made at the 
four straight sections yielding four measurements 90 
degrees apart. 

If we substitute in Eq. 1 for four measurements 
and sum them, we have: 

4 R. +j$I f: (ai cos iej + bi sin iej) 

This reduces to: 

j& Rj = 4 R. + 4 (a4 + a8 + aI2 + . . .) 

Solving for R,: 

4 
R. = 1 c Rj - (a4 + a8 + aI + . . .) 

4 j=l 
(3) 

We know the value for R, to within the error of 
the amplitude of the 4th, 8th harmonics for four 
azimuthally equidistant measurements of radial 
position. The question now is, can we put an upper 
limit on the amplitude of these fourth harmonic 
oscillations without knowing the exact closed orbit? 

An upper limit can be calculated for the case 
of a systematic perturbation in the field value of 
each sector. The coefficients for the jth harmonic 
are derived by substituting Eq. 1 into the second 
order differential equation for radial betatron 
oscillations. 

d2R 
3=- k2(1-n) (R-A;) 
de" J 

This yields: 

ai 
= k2(l-n) 1 

bi J 
2n cos ie 

k2(1-n)-i2 ' o Aj 
de (5) 

sin ie 
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where: k = 1 + 4L/2~ R,; L is the length of the 
straight sections; R, is the radius of the curved 
section; Aj is the shift in equilibrium orbit posi- 
tion in the jth sector, corresponding to a change in 
the magnetic field in the jth sector from the nominal 
value. 

The integral is over both the curved and 
straight sections. As we are interested in the 
approximate value of a fourth-harmonic distortion, 
we can ignore the slight change in form by inte- 
grating over the straight section. The major correc- 
tion to the amplitude from the straight section is 
included in the k term. 

Set A, equal to A, in each sector with a 
sign change i 
term. 

o always be additive for the sin ej 
Therefore, the cosine term sums to zero and 

we have: 

b,=!h!ik .t) 
k (l-n)-16 

Substituting for k = 1.255, n = 0.66, A, = 18" 
(where A, = 18" corresponds to a 1 percent magnetic 
field change) gives b4 = 0.79 inches. 

A highly systematic perturbation of one 
percent at each sector only produces a fourth harmonic 
distortion in the closed orbit of about 0.8 of an 
inch. 

If we assume we could have a value of 
20 percent of this undetected in our closed orbit 
measurement, we would have an uncertainty in R. of 
f 0.16 inches from the undetected 4th harmonic. 

III. Time-of-Flight Measurement 

As we are working with particles in the 
relativistic region, we must determine the 
relationship between changes in kinetic energy and 
changes in 6. We can derive the relationship from 
E = Eo(l-0)-l/2 and E = E, + KE. Where E is the 
total energy, E, is the rest energy, KE is the 
kinetic energy and s is the particle velocity divided 
by C, the velocity of light. The kinetic energy is 
given by: 

KE = E, [(l-6)-1/2-1] (6) 

Taking the derivative and dividing by KE 
yields: 

+x+2 dg 
EO I -ii 

For a time-of-flight measurement in the 
Bevatron, the velocity is given by: 

v = Sf (‘3) 

where S is the equivalent path length and f is the 
frequency of the accelerating system (1st harmonic 
acceleration). The error in v for errors in S and v 
is given by: 

As the 
106 to 

frequency can be measured to from 1 part in 
1 part in 1010 we have: 

The path length S is given by S = 2n R, + 4L where 
R, is the mean value of the closed orbit and L is 
the length of a straight section. For L equal 20 
feet and R, equal 604 inches we have: 
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dS -- 
S - R. +d!L,2n = 0 789 !ifi ' R 

0 

Substituting Eq. 9 in Eq. 7 gives: 

(10) 

(111 

The values of dS/S as a function of KE for a 1 percent 
error in KE is shown in Table I. 

Table 1. Uncertainty in path length vs. kinetic energy 
for 1% error in KE. 

KE (Me'/) dS/S 

100 

500 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

4.29 x 10-3 

2.56 x 10-j 

1.57 x 10-l 

7.66 x 10-4 

4.54 x 10-4 

3.00 x 10-4 
2.13 x 10 -4 

1.59 x 108 

1.20 x 1o-4 

9.80 x 10-5 

The radial beam position measurements are made 
as follows. The beam is placed at the correct radial 
position for beam extraction by setting the appro- 
priate value of radio frequency(rf) of the accelera- 
ting system. The rf is adjusted to remain constant 
over an extended period of constant magnetic field 
(flattop). The intensity of the circulating beam is 
monitored by a capacitive pick up system (BIE). The 
intensity of the circulating beam is read and then a 
finger target is flipped into the edge of the circu- 
lating beam. The intensity is read again and the 
ratio of the two readings is taken. The value of 
magnetic field and the rf are also read'and recorded. 
These three values are recorded for ten Bevatron 
pulses. The radius of the finger target is changed 
and another set of data points is taken. A series of 
these runs is taken at each of the four probe posi- 
tions. These measurements give the relative orbit 
positions around the Bevatron. A similar run is made 
with a U target at the east straight section to give 
an absolute radial measurement. These are shown in 
Fig. 1. 

The relative radial position for a fixed value 
of ratio can be read from these plots to * l/16 inch. 
The radial position can be read to * l/8 inch. The 
shaft end play on the probes is about f l/l6 inch 
and the absolute radial position calibration is about 
l l/16 inch. From section II we have an estimate of 
f 0.16 inches for a possible undetected fourth 
harmonics. This gives an error in radius of: 

(.062)2 + (.125)2 + (.062)2 + (.062)* + (.16)* 

AR = f 0.24 inch 

From Eq. 3, ignoring the 4th, 8th, etc. harmonics, 
we have: 

(12) 
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Fig. 1. Radial beam position measurements. 
Ratio BIE signal to radial position 
of probe. Finger 
North (O), West (A P 

robes location: 
, East (0), 

South (A).. U Target measurement in 
East (a). 

Therefore we have: 

c$Rms =m 

AR 
0 T Rms 

= f 2.02 x 1o-4 

for R. = 604 and AR = 0.24. 

Substituting this value in Eq. 10 we have 

% = f 1.61 x 1O-4 (13) 

The change in effective magnetic quadrant 
length causes a maximum shift in closed orbit of about 
13 inches. It also puts a scallop in the orbit 
through the quadrant as shown in Fig. 2. This can be 
calculated from a normal betatron oscillation with a 
radial kick at the end of the quadrant.1 This gives 
a path length correction of 

y = - 3.51 x 1O-4 DL (14) 

where DL is the extra length of effective magnetic 
field at each end of the quadrant. The maximum 
value at the Bevatron is 7.5"/2 = 3.75". For an 
uncertainty of a factor of 2 in this value, Ap/p = 
-3.51 x 10-4 x 3.75/2) = 6.58 x 10-4. 

The error in the path length for this error 
plus the error from R, measurements is given by: 

As 0 3 Rms 
= * 6.88 x 1D-4 

Substituting in Eq.11 for KE = 500 MeV/amu gives 
AKE/KE of * l/4%. The major part of the error comes 
from the quadrant length uncertainty not from the 
radial measurements of closed orbit. This uncertainty 
is probably too high, but until some measurements of 
beam radius in the quadrants can be made, I fee1 that 
a factor of two possible error is reasonable. 

Normal Orbit for KE 

90"quodront 

Perturbed orbit for some KE 

'Perturbation Pertu*otion/ 

Fig. 2. Perturbed orbit from quadrant length 
variation. Maximum orbit offset in 
Bevatron is about 13 inches. 

For the actual energy measurement R, is 
determined from the probe runs (Fig. 1). The radius 
is measured in the field free region of the straight 
sections so a radial correction must be made for the 
orbit drifting outward when passing through the 
fringe field at the end of the sectors (see Fig. 3). 
This is about a 'l/4 inch in the Bevatron. Ro is 
therefore given by R. = l/4 C R. -l/4. The path 
length is then calculated from t = 2n R, + 4L. A 
correction to the path length must be made because of 
the quadrant length correction using Eq. 14. 

SC = (2r R, + 4L) [l - 3.5 x 1O-4 DLI 

The velocity 8 is then calculated from Eq. 8: 

6 = vlc = Scflc 

6 = (2n R, + 4L) (1 - 3.51 x lO-4 DL) f/c 

This value of B is then substituted in Eq. 6 to 
determine the kinetic energy of the particles. 

Calculated orbll 

Shift in orbIt 

ideal orbit 

End of pole tip iron 

tl 
0 

h 

8. 60 40 20 0 20" 40" 60" 
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Fig. 3. Fringe field trajectory. 
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