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1. INTRODUCTION 
The differential equation of the dipole moment of 

coherent oscillations in the presence of a feedback 
system is derived. The analysis, which starts in the 

time domain, is extended to the frequency domain; this 
allows a straightforward derivation of the damping rate 
for both coasting and bunched beams. The damping rate 
is expressed in terms of the transfer function of the 
feedback system and in a general form which takes into 
account the B-function and betatron phase modulation 
along the beam trajectory, the effect of memory arising 
from the finiteness of the system bandwidth, the effect 
of the time delay and of the betatron phase advance 
between detector and kicker. Some examples of the 
dependence of the damping rate on the feedback 
parameters are given. 

2. DESCRIPTION OF THE SYSTEM AND DEFINITION OF THE 
SYMBOLS 

The schematic layout of the system is shown in 
Fig. 1. The detector (D) monitors coherent transverse 
(horizontal or vertical) oscillations of the beam. A 
voltage signal proportional to the beam displacement in 
D is transferred, with an appropriate delay, to the 
kicker (K) which deflects the beam. The symbols used 
in the analysis are the following: 

t = time 
we/2a = revolution frequency 

R = ring mean radius 
s = distance measured along the beam closed orbit 
0 = azimuthal angle around the ring (increases by 2~ 

in one revolution). 

Vo = betatron tune in absence of damping 
v = betatron tune with damping 
s = B- function 
$ = betatron phase = l/vo/z[ds/8(s)] 

$i = betatron phase of the i-th particle 
iLi = initial azimuthal angle of the i-th particle = 

Q(t) - wgt 
Xi = amplitude of oscillation of the i-th particle 

D = dipole moment. 
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Fig. I. Schematic layout of a 
feedback system. 
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D =.detector; BEAM 
K = kicker. 
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3. THEORETICAL TREATtiENT FOR COASTING BEAMS 
Let's express the displacement of the i-th 

particle in the form 

xi(t) = lp[+i(t)l 6ie-j”[4i(t)-ei1 
1) 

where the normalized amplitude (in the Courant-Snyder 
sense11 Ci can be complex, and is independent of time. 

The dipole moment D(8,t) is given by 

D(e,t) = Cixi(t)Gp(e-Oot-~i> = 

= ziG&T51 Gp(O-~ot-+i)Sie -jV [4y(t)-$~l 2) 

where 6P is the periodic d-function, and the summation 
over i extends to all the particles in the beam. 
*Work performed under the auspices of the U.S. Depart- 
ment of Energy. 

Since,when B'Wot+tii, $i(t)=$(e), Eq. 2) can be 
written 

D(e,t) = m e-'"9~iS~aJv~i6P(8-W,t-~i) 2a) 

If the longitudinal density is constant along the 
ring, then we have, for the n-th harmonic of the 
collective motion (in the variable JI = 6 - Wet) 

fiin I 
AN d ,",i'<i,,= % T e-j@ 

i 
3) 

where 5 is constant and independent of Jt, and N is the 
total number of particles around the ring. With the 
assumption implied in Eq. 3), Eq. 2a) becomes 

Dn(9,t) = k +%% e -j v4e-j (n-v> (e-w,t> = 

=- ;, 1~ e-jv(O-e)e-lne*j (n-v)w,t . 

Dn($,$) = g Tm e-j"(@-$)a-jnlli , 

4) 

the 
Equation 4) recalls the familiar expression of the 
coherent motio term mb-jv~gna "smooth" machine, modified by 

, which takes Into account the 
modulation due to the strong focusing. Equation 4 1 
can be written in terms of the variables I$,$ 

5) 
From the above equation we see that the function 
E,(+,$)=D,(ip,J,)/6W satisfies the differential 
equation 

6) 

In the absence of a feedback system or any other 
transverse impedance, the betatron frequency v in 
Eq. 6) is equal to the unperturbed value vo. 

In the presence of a feedback system, let the 
force field in the kicker be 

a(s,t) = A(t)G(s-sK) = e 
OK 

A(t)W-$K) 7) 

where so and & denote the position of the kicker,@K 
the S-function value at the kicker location. In this 
case, Eq. 6) can be written 

a23 
n f ~2 E,tO.+~ vo8; 

v2 
A(t)$(@ - 4,) 8) 

If F(t) is the Green's function of the chain 
detector-kicker, 

A(t) = _p", F(t - t') Dn(eD,t') dt' 

where BD is the azimuthal position of the detector. 
Denoting byF(ti(w) the Fourier transform of F(t), and 
substituting Eq. 4) into Eq. 91, we obtain 

A(t) = N zaD e-jvO(b-eD) e-jneD . 

. ?[(n - vo)~o]ej(n-vo)'ot . 

9) 

We mav now substitute Ea. IO) into Eq. 81, convert the 
equation in the ($,$I variables and average over one 
revolution. Since, on average, 

ej (n-vo)wO~ap(m-OK~~e -3 (n-v, 1 &,-j v. 4,-j V. (OK- $,) - 

* e 
,725 *-_I- 

0018-9499/81/06oo-2255%00.75~1981 IEEE 

© 1981 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.



Eq. 8) becomes 

. e-jn(BD-eK)E 0) 
l-l 

The perturbed frequency v is thus given by 

v2-v2 
0 

= ~~K~[(n-vo)oolejVo[($-~~)-((K-~~)l. 

-jn(eD-eK) . * e 

The imaginary part of v gives the damping rate. 
4. DISCUSSION ON THE EQUIVALENT IMPEDANCE OF THE 

FEEDBACK SYSTEM 
Equation 9) states that the damping rate depends 

on the Fourier transform of the Green function of the 
chain detector-kicker. In analogy with the definition 
of impedance which is used in describing collective 
phenomena, this function represents the impedance of 
the feedback system. This concept of impedance of a 
feedback system is, of course, well known. However, 
there are certain aspects which relate it to the 
temporal behavior of the response of the system which 
are worth discussing. 

Let F(t) be the Green's function of the system, 
with F(t) = 0 for t<~, T > 0, and let G(t) z F(t+r). 
From the definition of Fourier transform 

;(w) = 7 F(t)e-jwtdt , 

;‘(w> = e-J w’:(w) . 
As an example, let's consider the system depicted 

in Fig. 2. The kicker consists of a magnetic 
deflector; thus G(w) is the frequency response of the 
current in-the kicker to an input voltage at its input 
(2, 2'). F(o) is the current frequency response to a 
voltage signal at the detector (1,l'). Let's assume 
that the transfer function detector output (1,l'): 
kicker input (2,'2') consists of a pure delay T, and 
let's express this delay as 

10) 

where To = revolution period. Thus, E = 0 represents 
the case in which there is coincidence between the beam 
reaching the kicker position and the signal coming 
from the detector and induced by the beam. Replacing 
10) into 9), the betatron tune can be expressed in a 
useful form showing the explicit dependence on E: 

v 
2 2 voN- 

-v 7 $GK e j (WLiD+!JK)ej E(n-vo)W - 
0 

OG [(n-vo)wol 11) 

where p-nD+uK is the betatron phase advance from the 
detector to the kicker. 

KICKER 
Fig. 2. Circuit diagram ,, DELAYLINE 2, I 3 

I of a feedback sys- t-;-=Z, 7 $ i :'?, 1 I 
tern consisting of 
the detector out- 
put CD), a 
matched delay 
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2 l-----1 
line, an ideal 
amplifier and a magnetic kicker schematized by 
an inductance in series with a resistance. 

If the Green's function of the kicker is such 
that G(t)=0 when t=O, then, from the definition of 
Fourier transform, 

iI;(w)dw = 0 -. 
Thus some oE the coasting beam modes will always be 
antidamped. Increasing the rise time of the kicker 
response to a g-function pushes the antidamping terms 
towards higher frequencies. 
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5. INTERPRETATION OF THE PHASE ADVANCE DETECTOR 
KICKER IN THE FREQUENCY DOMAIN 

Since G(w) has the property, deriving from 
causality and the reality of G(t) 

G*(-W) = G(w) 

it follows, if G = U + jV, 
u(w) = UC-WI 
V(w) = -v(-w) 

condition which is common to all beam impedances. We 
see from Eq. 11) that a phase advance between detector 
and kicker which is an odd multiple of 90", and 
perfect coincidence (c=O), make the LJ part responsible 
for damping, thus allowing damping of both positive 
and negative frequencies. Any departure from 90' 
tends to decrease the effectiveness of the damping of 
the fast wave, and it may even lead to antidamping. 

6. DAMPING OF SYMMETRIC COUPLED BUNCH MODES 
A derivation similar to the one described in 

Section 3 has been applied to a bunched beam 
describing coherent oscillations. Each bunch is 
treated as a &-function of charge, and the betatron 
phase shift between consecutive bunches is 2.rrs/B, where 
B is the number of bunches and s the mode number 
(s=O,1,2..., B-l). 

In this case, the perturbed betatron frequency v 
of the s-th mode is given by the equation 

VN 

v20_v2= -+JBDB$ 
j (P-!JD+UK) y ej (B~+s-v~)~~~ , 

&do 

. z[(Ba + s - vo)~o] 

Equation 13) can be converted in the time domain, 
yielding 

v2-“L ej (WD+P-KK) . 
0 

. c 
e+ 

GtE + ET).+ (s--vo) (.7.rrE/B> 
B 14) 

The choice between Eqs. 13) and 14) depends on 
the characteristics of the kicker response: the 
faster the decay time response to a 6-function drive, 
the smaller the number of significant terms in the 
summation of Eq. 14) compared to Eq. 13). 

From the discussion of the previous section, we 
see that if the phase advance between detector and 
kicker is an odd multiple of 90' and sq, all the 
coupled bunch modes can be damped. Any departure 
from the above conditions may lead to some modes bedng 
antidamped. 

7. DEPENDENCE OF DAMPING RATE ON SOME FEEDBACK 
PARAMETERS 

We have applied the results of Eqs. II), 13), 
14), to the study of the type of feedback system 
depicted in Fig. 2. This is an ideal system where the 
delay line introduces a pure real delay r and the 
kicker is approximated by a resistance (R) in series 
with an inductance (L). The current in the kicker 
(thus the magnetic field responsible for the 
deflection) is related to an input voltage at the 
detector (proportional to the amplitude of the coherent 
oscillations) via the frequency response 

-jwc 
T(w) = K e 

1 + jurco 15) 

where K is a constant which includes the gain of the 
system, r is the delay, r,=L/R is the time constant of 
the kicker. The Green's function of the kicker is 
G(t)=e-t/To; thus, for such an ideal system, G(O)=l, 
and, following the argument of the previous Section, it 
is possible to damp all coasting beam modes. 

Figures 3a), 3b) show the damping rate (in arbitrary 
units) as a function of the coasting beam mode number. 
We have assumed (ISABELLE case), v,=22.6; the time 



constant of the kicker, To, is l/57 of the revolution 
period. The curves of Fig. 3a1 refer to three 
different values of the delay: E=O (coincidence), 
E=0.05To (kicker signal anticipates the beam), 
E = -0.05ro. It is interesting to note that the curve 
falls off less rapidly when the detector signal 
slightly anticipates the beam (E>O). This, however, 
has the consequence that, for larger mode numbers 
L Inlwn/w,E)yJ, the damping rate changes sign, thus 
antidamping. In Fig. 3b), we show the effect of a 
phase advance detectortkicker different from an odd 
multiple of 90": obviously a large deviation from this 
optimum condition introduces antidamping. Figures 4a1, 
4b) show the effect of the kicker time constant and 
phase advance detector+kicker on a bunched beam. The 
calculations were carried out for 57 bunches (* the 
number of bunches in ISABELLE at injection) and the 
kicker time constant is expressed as a fraction of the 
time separation between consecutive bunches. The 
dependence of the damping time on the delay is shown in 
Fig. 4~): for E>O (driving signal at the kicker 
precedes the beam), the o ly effect is a damping rate 
reduction by the term e 9 -E '0 (provided E is less than 
the bunch separation); for a0 (beam precedes the 
signal) the effect is more serious, and some of the 
modes are actually antidamped. 
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Fig. 3. Damping rate of coasting beam modes for 
various delays and betatron phase advances, 
A$) between detector and kicker. The delay ; 
is expressed as a fraction of the kicker time 
constant, E=h/ro. For each curve, the damping 
rate is normalized to the maximum value. 
a) A$ = 90”; ‘To = l/57 revolution frequency 
b) E = 0; TV= l/57 revolution frequency. 
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Fig. 4. Damping rate of bunched beam modes for 
various : 
a) Kicker time constant, yo, expressed as a 

fraction of the bunch separation: 
To = 57 (rowo/2~). A$=90°; E=O. 

b) Betatron phase advance detector+kicker, A$, 

6 = 1; E= 0. 
cl Delay c, expressed as a fraction of the 

bunch separation: 
Ag=90’; ;o=i. 

; = 57(~w,/211). 
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