
The operation of the SLAC two-mile linear accele- 
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rator in the single pass collider mode will be computer 
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controlled. Mathematical models will be used in the by 
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control program to set up and restore the beam optics 
o=c -Cl 3 Y * (1) 

and to correct orbits. Some of the requirements imposed 
upon the on-line model calculations and the ways to sa- 

The value of the beam emittance varies as l/E so that in 

tisfy these requirements will be described in this paper. 
the presence of acceleration Eq. (1) serves as a defini- 
tion of B, a and y provided that we take E = coEo/E. 

Introduction The Linac Lattice 
The proposed single pass SLAC Linear Collider (SLC)l 

will be operated under computer control. One of the 
main components in SLC that needs computer control will 
be the SLAC linear accelerator (linac). The computer 
control of the linac involves the following steps: 
choice by the user of the lattice-parameters to be con- 
trolled; on-line calculation of the control-parameters 
corresponding to desired values of the lattice-parame- 
ters; setting of the power supply currents automatical- 
ly to the set-point values. These steps are to be used 
also for the computer control of other SLC components 
such as the damping storage rings and the transport beam 
lines. In general, the control-parameter values are to 
be computed from mathematical models which have been 
made to represent the various components; they are solu- 
tions to a set of equations which are usually nonlinear 
and are solved numerically on-line during machine opera- 
tion. The machine operator can enter the values of the 
machine-parameters desired and the control program will 
solve these equations for the control-parameter values 
corresponding to these machine-parameters. Since the 
actual machine-parameters are not directly controlled 
by this procedure, the performance of the machine is 
strongly influenced by the precision of the models. 
Hence, model making is a very important part of the 
design of a control program. 

There are 30 sectors in the linac lattice. The rf 
power for each sector is supplied by 8 klystrons, with 
each klystron supplying power to a 12.34-m girder which 
supports four -3-m accelerator sections. At the begin- 
ning of each girder is a F or D quadrupole magnet to 
focus the beam horizontally or vertically. At the end 
of a sector is a 2.8-m drift space in which a quadrupole 
doublet has been placed. This doublet and the two near- 
est singlets form a matching insertion which matches the 
beam matrix between adjacent sectors. In this lattice, 
which is shown in Fig. 1, one sector begins with a D 
quadrupole and the next begins with an F quadrupole 
since there is an odd number (nine) of quadrupoles in 
each sector. A half-superperiod consists of two and 
one-half cells and one matching insertion. 
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We have developed models for determining the con- 
trol-parameter values which match the envelope of the 
beam at injection, focus the beams transversely along 
the linac, correct the central orbits and compensate the 
effects due to the failure of a klystron. We will need 
many more models for the other SLC components besides 
the linac. In this paper, we will describe some of the 
linac operating conditions required for SLC, how these 
requirements are incorporated into the models and how 
the models are integrated into the control program. 
This paper may facilitate the work required in the model 
development for other SLC components. 

Fig. 1. Half-superperiod of 
the linac quadrupole lattice. 

The Beam Matrix 

We consider the basic elements in the linac lattice 
to be drift spaces, accelerator sections and quadrupole 
magnets. As a first approximation, the behavior of the 
beam is represented by the (symmetric) beam sigma matrix, 
o, which satisfies the condition2 o = R oo ii, where R is 
the transfgr matrix from point o to the observation 
point and R is the transpose of R. The particle motion 
is given by the vector (x,x',y,y'). For the case of un- 
coupled x and y motions, we have two symmetric 2x2 ma- 
trices, ux and o Y' and the beam emittances, sx and E 

Y' 

A procedure for setting up the lattice configura- 
tion will now be described. This procedure will be va- 
lid so long as the relative energy change per cell is 
small. The lattice configuration is defined by the be- 
tatron phase shifts per cell, Aex and A$,. Let k denote 
the strength of a quadrupole (integrated gradient/mag- 
netic rigidity) and let the beginning of a given sector 
be denoted by o. For given values of A$x and A$,, the 
strength of the cell quadrupoles, kf and kd, are compu- 
ted as well as the values of the periodic betatron func- 
tions at the entrance of the cell (B,, uo, yo). We im- 
pose the condition that 1 u =.--... Bo(Atix,AJly) -ao(AixAy) 

o E 
1 
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where the invariant emittance EE has been normalized ar- 
bitrarily to unity. Matching is achieved by adjusting 
the strength of the four quadrupoles kl, k2, k3, and k4 
in the matching cell such that the u matrix at the end 
of this sector is equal to the o matrix at the begin- 
ning of the next sector, i.e., 
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where R is the transfer matrix of the given sector, fo 
is the energy at the beginning of the next sector and 
A$, and A$y are the desired phase shifts per cell in 
the next sector. Since not all of the matrix elements 
of o are independent, we need to satisfy the following 
equations: 

Bxo(A$x,A$ > 
cl xll(kl>k2,k3,k4) = 

EO 
\-I 

util(kl,k2,k3,k4) = - 
axo(A?,,AG ) 

B 
0 

and the same equations with subscript y. The inversion 
of these equations is done on-line by the control pro- 
gram. In this model, the lattice-parameters are AJI,, 
A$, , AGx and A$, and the control-parameters are kf, kd, 
kl, k2, k3, and kq. The control-parameters are found 
numerically for given values of E, and AEi with 
i = 1,2,.. 8 denoting the energy gain from the ith 
linac girder within the sector. 

The main consideration that influenced our choice 
of the linac lattice has been the need to minimize the 
E-function in order to reduce the disruption caused by 
transverse wakefields. Using the proposed scheme, it 
is possible to keep the maximum 8 values in the match- 
ing cells smaller than those in the cells in the adja- 
cent sectors as shown in Fig. 2. The phase advance of 

..I0 z (meters) y,...l 

Fig. 2. The betatron functions for one super- 
period (two sectors) of the linac lattice. 

90 degrees/cell is maintained up to a beam energy of 
26 GeV. Between 26 and 50 GeV the phase advance de- 
creases to 40 degrees/cell at the end of the linac since 
we will be limited by the maximum current of the magnet 
power supplies. 

A special scheme has been developed to be used for 
launching the beam from the linac injector into sector 
2, where the injection system and extraction system for 
the damping rings are to be located. Tests to measure 
the wakefield effects in sector 1 are being conducted. 
For these tests the beam matrix is measured at the be- 
ginning of sector 1 and we adjust the strength of the 
quadrupoles in the first half of the sector 1 such that 

the beam matrix at the end of the sector is equal to 
the desired value at the beginning of sector 2. This 
scheme has been incorporated into the control program 
for the sector 1 test. 

Orbit Correction 

In order to suppress the generation of transverse 
wakefields it is important that the trajectories of 
simultaneous beams of electrons and positrons passing 
through the lattice be well centered. Within each 
quadrupole there is a beam-position monitor to measure 
the positions of the electron beam and of the positron 
beam separately. Each quadrupole has trim windings 
that can be used to make a magnetic dipole field in any 

direction perpendicular to the linac axis. There are 
two possible causes for trajectory errors: static 
fields (due to quadrupole misalignments) which deflect 
positrons and electrons in opposite directions; rf 
fields (due to a tilted linac girder or to an asymmetry 
in the waveguide-end couplers) which deflect positrons 
and electrons in the same direction. It is possible to 
simultaneously correct the trajectory distortions caused 
by both sources of error with the static dipole wind- 
ings on the quadrupoles. 

We have made a computer model of the linac lattice 
with thin-lens elements according to the scheme de- 
scribed in the preceding section. This model has been 
used to study the trajectory correction problem. We 
model the rf error deflections by giving the beam a 
single random kick at the center of each 12.34 meter 
girder, the same point at which the acceleration has 
been introduced. The static error problem has been 
modeled by introducing a random displacement of each 
thin-lens quadrupole, and another random displacement 
of each position monitor. We have chosen the following 
distributions for random errors for our study. Quadru- 
pole displacements and beam-position-monitor errors 
have been uniformly distributed between -.l and +.l mm. 
The rf kicks are uniformly distributed between -3 x 10s5 
and +3 x 10-5 GeV/c and are assumed to be centered in 
each girder. This distribution is consistent with 
measurements which have been made on the linac. 

Our correction scheme is as follows. Let the cor- 
rectors be specified by index j (j=1,2,.. N) and_ the 
monitors by index i (i=1,2,.. M). Let xt and xi be the 
measured positions of the e+ beam and e- beam at the 
i-th monitor before corrections are applied. If we 
turn on the j-th corrector, the orbit at the i-th Eoni- 
tor will change by Czj0j for the e+ beam and -Cije. 
the e- beam. +Bi are the kicking angles for the A+ 

for 

and e-. Cij are the response matrices determined by 
the linac lattice; Cp. will be zero if the j-th cor- 
rector is downstream o 2 the i-th monitor. We wish to 
find a solution ej (j=1,2,..,N) which minimizes the 
sums of squares of residuals (S) of the orbits after 
correction: 

s= g [txl + $ c:jej)2 + (x7 - $ ‘;jej)*] t5) 

If we group the constants Clj and Cij to form two MxN 
matrices c+ and C-, and group xl and xi to form two M- 
dimensional vect';;rs x+ and x-, the solution for 0 which 
minimizes S is given-by the-following expression? 

2 28 -(;++c+ + :-c-)-l (F-x+ - z-x-, (6) __ -- I- -- 
g is the transpose of 2 This solution can be readily 
computed on-line. 

The trajectories of the electron and positron beams 
before and after correction calculated from Eq. (6) are 
shown in Figs. 3 and 4 for a typical case having the 
error values given above. It can be seen that after 
correction the rms displacement error for each beam is 
less than .05 mm. This orbit correction scheme will be 
implemented into the SLC control program. In this model 
the input-parameters are the measured orbit values at 
the position monitors xi. The control-parameters, ej, 

are calculated on-line and the results are stored for 
use by a separate program module which controls the power 
supplies. The same procedure is used for y positions. 

Klystron on/off Compensation 

There will be a total of about 240 klystrons in the 
linac. Each klystron will supply pulsed rf power to one 
of the 240 linac girders. During the operation of the 
linac, a few of the klystrons will be operated in the 
standby mode such that the rf accelerating fields in the 
corresponding girders are delayed in time relative to 
the beam pulse. In order to keep the beam energy at the 
end of the linac constant, whenever a klystron failure 
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Fig. 3. Distribution of the positron beam po- 
sition before correction. The distribution of 
the electron beam position is similar and has 
an rms value of 0.245 mm. 
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Fig. 4. Distribution of the positron beam 
position after correction. The distribu- 
tion of the electron beam position is + 
similar and has the same rms value as e . 

occurs one of the standby klystrons will be used as a 
replacement and be switched into the accelerate mode. 
At the same time the klystron which failed will be 
placed on standby. The replacement of klystron A by 
another klystron B will cause the energy of the beam 
along the lattice between the corresponding sectors A 
and B to be either raised or lowered. Because of this 
change in the beam energy, the strength of the quadru- 

scheme would be to correct the orbit effect locally and 
to restore the orbit globally. We have studied a local 
correction scheme with the thin-lens linac model. In 
this scheme, we assumed the rf field errors are known 
at girder A or B. To correct either an x or y orbit we 
compute the strength of the four orbit correctors which 
are nearest to girder A or B such that the orbit change 
they introduce is opposite to the orbit change caused 
by the rf field error. The result has been found to be 
satisfactory, i.e., the strength of the correctors and 
the orbit error between the four correctors are within 
acceptable limits. The orbit outside of the correctors 
is also restored if the strength of the orbit correc- 
tors outside of this region is scaled inversely pro- 
portional to the new beam energy. 

Appendix 

We consider a continuous function F(x,y,z) which 
can be evaluated somehow for any set of (x,y,z). This 
evaluation may be slow, for example, if lengthy itera- 
tive approximations are needed. We choose, however, 
specific values of (x,y,z) and use the resulting func- 
tion values to generate N Chebyshev coefficients. 
These coefficients can subsequently be used efficiently 
to find F for any new set of (x,y,z). The computation 
time required to generate F is then essentially only 
the time needed to do N multiplications.3 Moreover, 
since Chebyshev expansions are known to have, in gene- 
ral, the fastest convergence, there are usually sur- 
prisingly few terms in the Chebyshev series needed to 
achieve a required precision. 

This method has been applied to solve for the 
values of kl, kq, k3 and k4 from Eq. (4). We used a 
computer program4 from CERN which was modified to our 
needs of three variables Eo, A$ and A$, for the case of 
equal phase shift/cell in both x and y and a given set 
of values of AEi. This program, when given the (slow) 
function generator , Eq. (4), produces explicitly the 
fast algorithm with the correct numerical values. We 
have four-functions to be evaluated rapidly, i.e., 
F(E ,A$,A$) = kl, k2, k3 or k4. We find that using 15 
toe ficients gave a precision of 1%. 8 The time 
required to compute these functions is typically less 
than 1 msec. 
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We have also studied this rematching problem with 
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the thin-lens linac model. It has been found that the 
computation time to rematch a sector is about 20 msec 
(VAX computer). In order to keep the computation time 
to a minimum, in practice, only the strength of the 
quadrupoles in sectors A and B will be recalculated 
using the model, while the strength of the quadrupoles 
in sectors between A and B will be obtained by scaling 
their values appropriately with the updated beam energy 
value. To further reduce the computation time by well 
over an order of magnitude the technique of Chebyshev 
representation can be used. (See appendix.) 

The beam orbit values are also affected by adding 
or subtracting a klystron due to the addition or sub- 
traction of the errors in the corresponding linac gir- 
der. In principle, the least squares global correction 
scheme could be used to correct this effect. However, 
the time required to remeasure the orbit may be too 
long and the orbit after correction would not be re- 
stored to the orbit before klystron failure. A better 
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