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THE TRANSIENT RESPONSE OF A MICROWAVE CAVITY

W, J, Gallagher *

Abstract

The classical analysis of the transient response
of a microwave cavity has experienced a substantial
re-examination in recent years for the reason that,
owing to improved technology, it is possible to
observe some aspects of the transient response for-
merly obscured and partly because of the misguided
desire of reconciling lumped circuit analysis with
the distributed circuit (microwave) solution,

In this paper the transient response is con-
sidered; secondly, the field solution 1s determined
from the differential equation of the equivalent
circuit, An apparent discrepancy in the solutions is
resolved. The analysis also provides a quantitative
explanation of the reflected power pattern during
the RF pulse.

Preliminary Remarks

There are some global remarks which may be made
before a detailed examination of the system being
analyzed.

The power that enters a cavity through the
coupling mechanism (Po) will (in the case where there
18 no beam loading) be partitioned into joulean
losses (PL) and stored energy (V).

- dv
R=R+at )
By definition of the Q of the cavity (in this case
"loaded" because of the coupling mechanism) as the
ratio of stored energy to energy dissipated in one
radian,

v
Q = WPL (e
the above becomes
oY wl
i we | = 3
) P =0 (3)

This expression may be integrated by separation of
variables; with boundary conditions U = 0, t=0,

Ure) = '%&(/_ e_wl‘/QL) ’4)

Physically, the ultimate stored energy will be
U=z PQL/w , ie, the Q of the circuit is given by
Q 2 4¢VU/R,, as defined earlier (where ultimately all
the input power goes into sustaining losses).

The power that enters the cavity depends upon
the mismatch at the coupling mechanism,

- H
B =1~ jot?) P (5)
where is the voltage reflection coefficient and

Py the incident power. In terms of the more con-
venient measure of mismatch, VSWR ( o~ ),
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This VSWR is also the coupling coefficient at reso-

nunce,/B , (or its reciprocal in the undercoupled

case). Hence the input power to the cavity is
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Incidentally, it will be noted that the maximum power

transfer occurs at critical coupling (/3= /), but

this is not the condition for maximum cavity voltage.
The cavity voltage in the steady-state at reso-

h= i (7)
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nance,
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which has a maximum when /3 = 0,50,

The reader may object to the apparently simplistic
analysis in deriving Eq (4), in that the power flow
is not a constant, being a product of a sinusoidal
voltage and current (essentially a Poynting vector)
at the coupling mechanism,

Fre)=V,, I, coslwl 9)
On the other hand, the transient response arises from
the homogeneous equation (no driving force) and could
have been gotten from

v wl |

Af T e Y
with appropriate boundary conditions and interpretive
insight. The solution is, in either case, physically
the envelope of the oscillatory response, as the
disposition of the energy only is being considered
and this energy oscillates between completely elec-
tric and magnetic form, but the envelope represents
the total quantity. The gap voltage amplitude
(squared) has a linear relation to the stored energy,

_w Z‘/@L)
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Circuit Analysis
In the phenomenological description of microwave

circuits it is demonstrated that a tramscription of
Maxwell's equations is possible into matrix algebraic
equations ; this transcription is quite rigorous,
and is a result of the fact that Maxwell's equations
belong to the Sturm-Liouville class . Thus, any
approximations that appear in (lumped) circuit theory
arguments are a consequence not of the transcription
but as a result of ignoring some rows or colummns of
the impedance matrix provided by field theory.

The above remarks mean that the response of a
cavity to excitation may be represented by matrix
algebra methods (that is, in terms of lumped circuit
elements); it does not mean that specific parts of a
cavity may be identified with conventional circuit
elements, and therefore, that the uniquely definable
voltages and currents in the lumped circuit are not
specified in the distributed circuit.

‘If the input impedance of & cavity is plotted in
the plane of its terminals (plane of the detuned
short) the frequency trajectory of impedance points
(on, say, a Smith chart) will be represented as
shown on Fig. 1 (a); if the data is plotted one-quar-
ter wavelength from its terminals (in the plane the
detuned open) the trajectory is also shown in Fig.

1 (b). By the equivalent of Foster's Reactance
Theorem for circuits containing resistance, clearly
it is not possible to decide if the circuit is a
series or parallel resonant circuit; this is, of
course, a consequence of the transforming property of
a transmission line, but as a result it is mot
necessary to decide what is the "true" nature of the
circuit,

"Solution of the Equivalent Circuit Transient Case

With the lumped circuit equivalent of the resonant
cavity shown in the figure

(o)
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the equation of dynamic equilibrium is

Oﬁt' . VAR wt
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for the case of forced oscillation, The solution of
this equation becomes somewhat relevant in the reso-
lution of the transient case so it will be given here,
Eq (11) jmay be differentiated

a&t‘ "R12,) S # & = L coswt (9
Try the solution
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which will be satisfied for all values of t when the
coefficients vanish,

_(Rt2.) .
/ w'ic ed Lj

wé) cosQp %’*2 )S/ﬂ,a? ;/-» —wl %uz)

The dnmptng obviously plays no part in determining the
driving frequency of maximum response of the circuit,
which clearly occurs when ¢y = 1/1C, and is the inten-
ded driving frequency,

The transient part of the solution is the solu=
tion of the homogeneous or force-free equilibrium
condition,

L S+ +z/mz)+’/d2‘ 0

We assume a solution of the form

Tre T e £) 0

Substituting into Eq (12),
)70

/é,o HR+2,) + = (18)

which, for a non-trivill solution (e, { £ 0 ) leads
to the further condition

Lp fﬁﬁ’fzo)qt—c—;;- = (%)

which is the determinantal equation of the aystem; the
roots of this equation are the natural modes of the
system. Solving this quadratic equation we find two
roots:

Long = (15)

(s)

At

+2,)2 7
P T2 /- o @

As ve are only interested in highly oscillatory cases,
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and the roots may be written
- l//
Fe =~ 2R
e
The rltioR+z

s denonltrably the ratio of the
stored energy to time-average losses per radian, hence

we may put g L
(3 - (23)
so that w R* z

Ppe™~ t Y ef - /wa) (24)

vhere %/, x 1/IC is the frequancy of the mode of
oscillation in the absence of damping., The frequency
of free oscillation in the damped case is gives by

w V- (z5) (25)

that is, the natural frequency of the circuit is less
than it would have been in the absence of loss,

The complete solution of Eq, (11) includes that of
Eq. (16), since the homogeneous case is complementsry
to the non-homogeneous; that is, the complete solution
is the sum of the transient and steady-state responses;
then we may evaluate the integration constant from the
initial conditions., Many writers consider the solu-
tion to consist of a steady-state term and two tran-
sient terms, one an exponentially damped sinusoid,
the other a damped cosinusoid; at t ¢ 0 the transient
is equal in magnitude and opposite in sign to the
steady-state. Physically, there is only one natural
mode, 8o
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where at t 2 0, 1 = 0 80 LY “Ap=A/2,
So, the complete solution is
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since in the highly oscillatory case (&)~ 4,) vanishes,
and from the multiplicity of possible solutions (re-
sulting from initial conditions) we have taken that
the applied voltage is passing through a node at

t = 0 and 18 at the resonant driving frequency,

Note the voltage between two points in a micro-
vave cavity 1s of the form V¢ z 2 Rg,P where Ry, is
the shunt resistance, (The 2 utiue from a conventiou
among microwave engineers to express peak voltages,
but power is always an effective average,) Similarly,
the circuit current is of the form P = IZR,e where

Rge 18 the series resistance, The term / does
not differ from the impedance of free apace by more
than a geometrical constant for any mode; hence, the
form of the cavity voltage does not differ from that
of the circuit current,

It will, doubtless, not escape the reader's notice
that something has gone wrong here; Eq, (10) does not
agree with Eq. (27). The cause of the discrepancy
1ies in the fact that the power to the cavity is time
dependent, that is, Eq. (1) is basically non-linear,
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1f the input power to the cavity (P;) is taken as

L) Tz (s em %) (29)

it will be obvious that a singular solution of Eq.(Z8)
is

(8)
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from which the cavity voltage 1is

V 2/ ”/_ A
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Physically,

ly, the explanation of Eq. (29) is that the
input pover to the cavity is only constant at steady-
state (cf. Eq, 7)., The applied field at the coupler
does not "see" the steady-state equivalent circuit of
the cavity in the first instants, That this is so may
be seen from &n oscillogram of reflected power when a
unit step function of RF power is applied to a cavity,
Fig, 2, an effect well-known to experimentalists
(initially a resonant cavity is a short circuit),
The Discharge Transient

When the cavity circuit is in steady-state (t-> @)

the stored energy (U,)
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This follows from the definition of Q :a/UO/PO, where
all the input power ultimately supports losses.
If the cavity were without coupling the oscillatory
discharge damping would attenuate the stored energy,
U wl
At = G (33)

=

the solution of which is
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but with coupling to the outside world, (the real case},
the rate of energy loss 18 greater than Eq. (33) indi-

(34)

cates, Then
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where P, is the power radiated through the coupling

aperture. Transcending the generai solution, reaiism
requires , .
/e
/- £ Q. o= 2ewliQe 36,
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casa Rut it is true insofar as

case.

the Lorenz-Lorentz Thermodynamic Theorem (On ly half
the stored energy is recoverable from a storage system

as free energy). The stored energy at steady-state
is Uy = P QL /au ; the radiated energy 1is
P&
fp dt = - (38)
2w

Until P(t) ig defined there is no algorithm for the
solution of Eq. (28). The nature of P(t) must obvious-
ly be found in the physical process. Although an
analysis of oscillograms of the transient process
suggests itself as a basis for understanding the
mathematical physics of Eq. (28), that procedure
leaves us without & physical model of the process,

The physics of the transient response of a finite
length of lossless transmission line with a resonant

cavity tarmination {s gimilar to the claggical antenna
cavity termination 15 similar to (he clageslical antennd

problem, This is a first order reaction (one in which

the rate of reaction is directly, or inversely, pro-

sartional to tha amount of what {g chaneine). go that

porticnal to the amount of what is changing), so that
one expects P(t) to contain an exponential function;
little more can be said,
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O0f interest, but not discussed above, is the tran
sient nature of the reflection coefficient to the in-
put pulse. Since Py = P, + P, where P, 1s the
raflected powver, we enlua £ar
reflected power, we may solve for P
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(a) parallel resonance,

{b) series resonance.
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from & polaroid oscillogram)



