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THE TRANSIENT RESPONSE OF A MICROWAVE CAVITY 

W. J. Gallagher * 

Abstract 

The classical analysis of the transient response 
of a microwave cavity has experienced a substantial 
re-examination in recent years for the reason that, 
owing to improved technology, it IO possible to 
observe some aspects of the transient response for- 
merly obscured and partly because of the misguided 
desire of reconciling lumped circuit analysis with 
the distributed circuit (microwave) solution, 

In this paper the transient response is con- 
sidered; recondly, the field solution is determined 
from the differential equation of the equivalent 
circuit, An apparent discrepancy in the solutions is 
resolved. The analysis also provides a quantitative 
explanation of the reflected power pattern during 
the RP pulse, 

Preliminarv Remarks 
There are some global remarks which may be made 

before a detailed examination of the system being 
analyced. 

The power that enters a cavity through the 
coupling mechanism (PO) will (in the case where there 
is no beam loading) be partitioned Into joulean 
losses (PL) and stored energy (U). 

0) 
By definition of the Q of the cavity (in this case 
“loaded” because of the coupling mechanism) as the 
ratio of stored energy to energy dissipated in one 
radian, 

/a 

the above becomes 

Gw ~v-p=o 
cdt +x-- 0 

(3) 

This expression msy be integrated by eeparation of 
variables; with boundary conditions U t 0, t s 0, 

e - &/QL) 
(9) 

Physically, the ultimate stored energy will be 
U : P,QL/ w , ie, the Q of the circuit Is given by 
Q s eoU/Po, as defined earlier (where ultlrPrtely all 
the input power goes Into sustaining losses). 

The power that enters the cavity depends upon 
the mismatch at the coupling mechanism, 

(5;) 
where P is the voltage reflection coefficient and 
Pi the incident power. In terms of the more con- 
venient measure of mismatch, VSWR ( CT ) , 

This VSWR Is also the coupling coefficient at reeo- 
nance, /3 , (or its reciprocal in the undercoupled 
care). Hence the input power to the cavity is 

(7) 

Incidentally, it will be noted that the maximum power 
transfer occurs at critical coupling (8: / ), but 
this is not the condition for maximum Cavity voltage. 

The cavity voltage in the steady-state at reso- 
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nance, 

v,=dm =/-x 0) 

which has a maxlmum when P : 0.50. 
The reader may object to the apparently simplistic 

analysis in deriving Eq (4)) In that the power flow 
is not a constant, being a product of a sinusoidal 
voltage and current (essentially a Poyntlng vector) 
at the coupling mechanism, 

iv) = v$JT, cos2KJt 0) 
On the other hand, the transient response arises from 
the homogeneous equation (no driving force) and could 
have been gotten from 

dU wu 

dt f QL =’ 

with appropriate boundary conditions and interpretive 
insight. The solution Is, in either case, physically 
the envelope of the oscillatory response, as the 
disposition of the energy only is being considered 
and this energy oscillates between completely elec- 
tric and magnetic form, but the envelope represents 
the total quantity. The gap voltage amplitude 
(squared) has a linear relation to the stored energy, 

G2= 2 -$LY = 2R&- e' w t/“) Qo) 

Circuit Analysis 
In the phenomenological description of microwave 

circuits it is demonstrated that a transcription of 
Maxwell’s equations Is possible Into matrix algebraic 
equations ; this transcription is quite rigorous, 
and is a result of the fact that Maxwell’s equations 
belong to the Sturm-Liouville class . Thus, any 
approximations that appear in (lumped) circuit theory 
arguments are a consequence not of the transcription 
but as a result of ignoring some rows or columns of 
the impedance matrix provided by field theory. 

The above remarks mean that the response of a 
cavity to excitation may be represented by matrix 
algebra methods (that is, In terms of lumped circuit 
elements); it does not mean that specific parts of a 
cavity may be identified with conventional circuit 
elements, and therefore, that the uniquely definable 
voltagee and currents in the lumped circuit are not 
specified in the distributed circuit. 

If the input impedance of a cavity Is plotted in 
the plane of its terminals (plane of the detuned 
short) the frequency trajectory of impedance points 
(on, Bay, a Smith chart) will be represented as 
shown on Fig. 1 (a); If the data is plotted one-quar- 
ter wavelength from its terminals (in the plane the 
detuned open) the trajectory is also shown in Fig. 
1 (b). By the equivalent sf Foster’s Reactance 
Theorem for circufts containing resistance, clearly 
it is not possible to decide if the circuit is a 
series or parallel resonant circuit; this is, of 
course, a consequence of the transforming property of 
a transmirrion lime, but as a result It ir not 
necessary to decide what is the “true” nature of the 
circuit, 

Solution of the Equivalent Circuit Transient Case 

With the lumped circuit equivalent of the resonant 
cavity shown in the figure 
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the equation of dynamic equilibrium is 

L &L(Rfl,l f 1(7/rt.dl’=[$ 5l) 
for the case of forced oecillatlon, The solution of 
this equation becomes somewhat relevant in the reso- 

where u0 e l/Ix: is the frequency of the mode of 

lution of the transient case so it will be given here, 
oscillation in the absance of damping. The frequency 

gq (11) may be ilifferentiated 
of free orcillation in the damped caee is given by 

/ /I rq 

ah -&x +(R fZ*) dt f L+ = 
dt’ y5os~t /q 

Try the solution 

which will be satisfied for all values of t when the 
coef f iclenta vanish, 

tam sp fRb?o) = -I_- - 
f 1 -&L) WC 

05) 

& 1 ,c ------- -_.--- - E 
t$ -wq coy +@&)iifiy~-~&~j 

The damping obviously plays no part in determining the 
driving frequency of maximum response of the circuit, 
which clearly occurs when & : l/IL, and is the inten- 
ded driving frequency. 

The transient part of the solution is the solw 
tion of the homogeneous or force-free equilibrium 
condition, 

L -$$-ti(~+~) tgpt =o 
We assume a solution of the form 

di i=At!& -d’;-E-=tp, fidt=$, 67) ( 1 
J , 

Substituting into Eq (12), 

which, for a non-trivial solution (ie, i# 0 ) lead8 
to the further condition 

lp t(RtZ$+ $- = 0 
which is the determinantal6quation of the system; the 
roots of this equation are the natural modes of the 
eye tern. Solving this quadratic equation we find two 

P 8% *ypm ($3) /,z=- 2L 

As we are only interested in highly oscillatory cases, 

and the roots may be written 

42 
= - $?L$ *j -(bS-&G-)2&* 

The ratio R+ Eb -*5-ia daaronrtrably the ratio of the 
stored energy to time-average losses per radian, hence 
we may put 1 

‘a 
I 

p-v- 

t!u 
- Rfz, 

03) 
so that , 

P 'r2= 
-e $ *j/u:- (!-j2 (24) 

4 

‘d,, r w,//-(~r 
c/ 

that ie, the natural frequency of the circuit ir less 
than it would have been in the absence of loss, 

The complete solution of Eq. (11) includes that of 
Eq. (16), since the homogeneous case Is complementary 
to the non-homogeneous; that is, the complete solution 
is the sum of the transient and steady-state responses; 
then we may evaluate the Integration constant from the 
initial conditions, l4any writers consider the eolu- 
tion to consist of a steady-state term and two tran- 
sient terms, one an exponentially damped sinusoid, 
the other a damped cosinuroid; at t t 0 the transient 
is equal in magnitude and opposite in sign to the 
steady-state. Physically, there ie only one natural 
mode, 80 

,‘ /4j p!J/2Q Sin wh t 0 26 

where at t : 0, i : 0 so A, s -A2gA/2. 
So, the complete solution is 

J/fl w, t ) 
-+/a, 

s/nk& 
E S E 1-e' 1 

% t/m 
) s/n w* t 

since in the highly oscillatory case (%- W,) vanisher, 
and from the multiplicity of possible solutions (re- 
sulting from initial conditions) we have taken that 
the applied voltage ie passing through a node at 
t l 0 and ie at the resonant driving frequency, 

Note tha voltage between two points in a mlcro- 
wave cavity is of the form V2 : 2 RshP where R,h Is 
the ehunt resistance, (The 2 arise from a convention 
among microwave engineers to express peak voltages, 
but power is alwaye an effective average.) Similarly, 
the circuit current ie of the form P : 12R,, where 
R se is the series resistance. The terni- doer 
not differ from the Impedance of free apace by more 
than a geometrical constant for any mode; hence, the 
form of the cavity voltage does not differ from that 
of the circuit current. 

It will, doubtless, not escape the reader’s notice 
that 8omething has gone wrong here; Bq, (10) doer not 
agree with Eq. (27). The cause of the discrepancy 
lies in the fact that the power to the cavity is time 
dependent, that Is, Eq. (1) Is basically non-linear, 
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d!Y QJl/ 
dt -+ Q‘ = - /‘d(t) 

If the input power to the cavity (PO) is taken as 

413 P‘ 
Qii’= p,z f / - e - 

wt/2Qt 
) lw 

it will be obvious that a singular solution of Eq.(28) 
fs 

4/3 Pi QL 
Ufl:&ip-is- i-e- / 

&Jt/24 2 
/ 0) 0 

from which the cavity voltage is 

V(f) da? #; (/ - e- +@y &) / 
Physically, the explanation of Eq. (29) is that the 
Input power to the cavity is only constant at ateady- 
state (cf. Eq, 7). The applied field at the coupler 
does not “see” the steady-state equivalent circuit of 
the cavity in the first instahts. That this is so may 
be seen from an oscillogram of reflected power when a 
unit step function of RF power Is applied to a cavity, 
Fig. 2, an effect well-known to experimentalists 
(initially a resonant cavity IS a short circuit). 

The Discharne Transient 
When the cavity circuit is In steady-state (t + ~13 ) 

the stored energy iU,> 

t?Q‘ 
h---z-= 

QL 4n e 
p/3/Y Cd 

This follows from the definition of Q :wU,/P,, where 
all the input power ultimstely supports losses. 

If the cavity were without coupling the oscillatory 
discharge damping would attenuate the stored energy, 

cw &II/ -- -- 
Go - 90 

the solution of which is 

&To u(t)= -&-- e- Lu 2yQ* 

but with coupling to the outside world, (the real case), 
the rate of energy loss Is greater than Eq. (33) lndi- 
cates. Then 

dU -p=-/p-P, 

ie,, dU k/u 
tit +z=-e 

where P, IS the power- radiated through the coupling 
aperture. Transcending the general solution, realism 
requires 

u= yl. ,-wq& &,J 

4 2 6 e-20-f/WL (37) 

as may be verified by substitution, 

It may appear that the form of the power flux in 
the solution of Eqs. (28) and (37) was gratuitously 
chosen to produce the desired result; such is not the 
case. But It is true insofar as the solutions satisfy 
the Lorenz-Lorentz Thenuodynamlc Theorem (Only half 
the stored energy Is recoverable from a storage system 
as free energy). The stored energy at steady-state 
is u, : PJlL/&J ; the radiated energy is - -- 

f jdt= g 

Until P(t) is defined there is no algorithm for the 
solution of Eq. (28). The nature of P(t) must obvious- 
ly be found in the physical process, Although an 
analysis of osclllograms of the transient process 
suggests itself as a basis for understanding the 
mathematical physics of Eq. (28), that procedure 
leaves us without a physical model of the process. 
The physics of the transient response of a finite 
length of lossless transmission line with a resonant 
cavity termination is similar to the classical antenna 
problem, This 18 a first order reaction (one in which 
the rate of reaction is directly, or inversely, pro- 
portional to the amount of what is changing), so that 
one expects P(t) to contain an exponential function; 
little more can be said. 

Of Interest, but not discussed above, is the tran- 
sient nature of the reflection coefficient to the in- 
put pulse. Since Pi : P, f PC, where P, Is the 
reflected power, we may solve for P, 

p,= I+ (&.&he - &%a.)) (1391 
Then, the reflection coefficient during the-input 
Dulse /- . 

f 
l/r P, J J =---z---r vc’ pi 

(/_/3,12t 4b-Q - u(i2dA&, 
f/ +/v2 * 

-- 
J 

0 

Fig. 1 l.ocue of Impedance point8 a8 a function of 
frequency : 

parallel resonance, 
series resonance, 

time - 

Fig. (2). Reflected power from a resonant 
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