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Abstract 

The possibility of constructing compact, high- 
current traveling wave ion accelerators through 
employment of relativistic electron beam collective 
modes has been suggested often in recent years. A 
new mechanism based upon temporal modulation of 
the beam kinetic energy has been studied by us, using 
both analytic and numerical tools. 
linear 

Preliminary 
studies for the slow cyclotron beam mode 

indicate that such a mechanism can yield efficient 
acceleration to ion velocities of roughly 0.5 c in a 
simple, straight-walled waveguide. Numerical simula- 
tions have been performed to verify the theory and 
investigate nonlinear wave/particle interactions. 

I. Introduction 

Employment of natural collective modes of an 
intense relativistic electron beam is one of the most 
attractive concepts yet advanced for accelerating 
ions with strong self-fields of the beam. There are 
two fundamental requirements for any such collective 
traveling-wave accelerator. The first is simply that 
large amplitude waves must be stable and possess long 
coherence lengths. Numerical simulations have demon- 
strated the viability of this, at least under ideal- 

ized conditions, in a variety of configurations. 1-3 

Controllability of the wave phase velocity is the 
other requirement. Again, a number of methods have 
been proposed for accelerating the self-consistent 

beam modes. 5-8 We have linearly analyzed one such 

technique, 8 variation of the relativistic beam 
energy. This is found to give somewhat more effic- 
ient utilization of the wave fields, while simplify- 
ing waveguide design and beam equilibrium constraints. 
Although the previous analysis concentrated on slow 
cyclotron modes, the concept should also be applicable 
to space-charge waves. To investigate this mechanism 
further, accurate two-dimensional equilibria were 
needed. These fields are easily derived, but incor- 
poration of them into the linear analysis makes the 
equations intractable. Numerical methods have, 
therefore, been used to study both nonlinear wave 
propagation and two-dimensional effects. Before 
describing simulation results, however, it is illus- 
trative to review the theory. 

The cyclotron mode is characterized as an oscil- 
lation in the r- and e-directions. In a relativistic 
beam, there are two separate cyclotron waves. The 
slow wave can be accurately modeled by the equation 

(1) 

where p 
t 

= y(v, + ive), At = Ar + iA*, R q eB 

and y Z [l - (~~/c)~]‘~. 
0 

/mc, 

A similar equation exists 

for p- = y(vr - iv ) but since the phase velocity for e 

this wave is always greater than c, it has no utility 
for ion acceleration. Eq. (1) can be solved approxi- 

mately by combining it with the equation for A’. 
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energy which is only a function of rl = t - Z/V 2’ with 

(Q- (.) v /r) constant in space, (I, can be obtained for 

arbitrary variations of y, subject only to boundary 

conditions. If we impose the condition 61 z=. = -uJot, 

w. : kOvz - QoiYo, the phase function takes the 

particularly interesting form 

Jl(z,t) = koz - wet - W,/u,) [1 - ~o/Y(‘lH (z/vz) . (2) 

The phase velocity is obtained by following the tra- 
jectory of a point of constant phase, i.e., 
d+/dt = 0. Numerical integration of ensembles of 
test ions in such traveling fields has indicated 
that efficient acceleration may be possible up to 
V. ion f 0.5 c with a variety of beam energy pulse 

forms. 

Equations (1) and (2) have been very useful for 
studying qualitative features of this collective 
acceleration mechanism, but they are both one-dimen- 
sional. Strong, significant radial inhomogeneities 
exist in intense, unneutralized beam equilibrium, 
however. Space-charge fields, for instance, result 
in large radial variations in y. For a solid, con- 

stant density beam of initial energy, E 0 = mc2(yo - 1) 

and radius, a, in a cylindrical guide of radius, R, 
we find 

- a2 [l + 2 Rn(R/a)]] . (3) 

Inserting an expression such as (3) into (2) gives a 
radial variation in the phase function which would 
tend to phase mix the cyclotron wave. This, in fact, 
occurs for continuum modes excited on the beam. 
Linear analysis of waves on self-consistent equilibria 
has been performed numerically, however, with the 
result that discrete, stable cyclotron waves are known 
to exist. These latter do not phase mix, at least in 
the small amplitude limit. Two dimensional effects 
may still introduce corrections into the dispersion 
relation, which in turn will modify the phase func- 
tion. Even if (2) remains valid, it is not a’ priori 
obvious what effective value should be used for the 
quantity, Qo/vzyo. These problems, as well as ques- 

tions of excitation efficiency and deleterious large 
amplitude nonlinearities, have motivated us to employ 
self-consistent two-dimensional particle simulations. 

II. Simulation Results 

Excitation of traveling cyclotron waves has 

been demonstrated in previous ca1culations.l This, 
though, involves simulation of a beam wave amplifier 
and is moderately complex. Since linear analysis 

4226 
0018-9499/79/0600-4226$00.75 0 1979 IEEE 

© 1979 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.



of phase modulated acceleration, moveover, indicates 
an intrinsic weakening for phase velocities above 

‘ph 
7 0.5 c, we are not interested in “fast” travel- 

ing waves. Our initial studies have concentrated on 
waves with low phase velocities. In this class, it 
is almost trivial to excite a cyclotron wave with 
zero frequency . With w = 0, the phase velocity is 
also zero, and the wave envelope appears as a steady 
sausage modulation on the beam. This mode is excited 
by almost any discontinuity in the waveguide, and in 
fact, can only be avoided with great care in simula- 
tions. It is sufficiently ubiquitous that consider- 

able effort has been made to suppress it.’ To 
understand this more clearly, a brief discussion of 
the mode is appropriate. 

Unneutralized beam propagation without radial 
motion is possible in a cylindrical waveguide if an 
external guide field, Bz, is imposed. The deconfin- 

ing self-field, Er, is almost balanced by a pinching 

force vzBg. This electric field is due primarily to 

space-charge while the magnetic one arises from un- 
neutralized current flow. If a Bz field is present, 

an l? X B drift in the D-direction results, 

V o E -(E, - vzBo)/BZ , (4) 

and the radial forces are balanced. When a metallic 
obstruction such as an anode foil or iris is intro- 
duced into the guide, however, the Er field is 

shorted, equilibrium is disrupted and the beam begins 
to pinch. The beam motion can be modeled’by letting 
the grounding field act as a source term, while all 
other self-fields cancel. Thus, the net field which 
the beam experiences is 

dii e 
P = t m ir(r,z) 
dt - (5) 

For excitation sources such as the anode foil or an 
iris, the force is highly localized in the axial 
direction. While it is impulsive in nature, though, 
the field is still of finite extent, and the magni- 
tude of radial perturbation must be calculated from 
exact spatial profiles. Since these are decidedly 
two-dimensional in a cylindrical waveguide, accurate 
estimates of the zero-frequency cyclotron wave ampli- 
tude are elusive. By assuming all quantities vary as 
exp(ikx - iwt), we can formally solve this problem. 
Thus, the perturbed density is 

1 a - n Z -in 0 r(u) - kvz) % ’ ‘r 

and the associated potential is 

(6) 

la aT 
2 1 a N 

- 
r GrZi 

_ k2 5 = -i 
r(w - kvz) % ’ ‘r * (7) 

The quantity Gr in turn comes from solution of 

Eq. (5). 
tion is 

Note also that the magnitude of the modula- 

and if Ar > R - a, the beam hits the waveguide wall. 
This is a fundamental constraint on electric field 
amplitude in beam cyclotron waves. Equation (5) also 
suggests that most efficient coupling should be into 
the w = 0 mode, since there is no time dependence in 
the source. 

Self-consistent numerical simulations have been 
conducted to evaluate this acceleration concept. In 
these calculations, beam particles are injected into 
an initially evacuated cylindrical waveguide through 
a grounded, “metallic” surface. An external Bz field 

of sufficient magnitude to maintain beam equilibrium 
is imposed. Since the metallic “anode” shorts radial 
self fields, zero-frequency cyclotron waves are 
generated. Wave acceleration is then achieved by 
linearly increasing the energy of the injected beam, 

i.e., Y = YOU + t/t), where typically t = 103. In 

these preliminary calculations y. = 7 (3 MeV) and the 

beam current is 30 kA. All distances are scaled to 

C/W 
P’ wP 

= (4nen fm) + 
0 , and fields to (4nn mc2)% o .For 

typical beam density, no, we find c/w Z 0.5 cm and 

(4nn mc2)' N 
P 

0 - 1.0 MeV/cm. This scaling further gives 

a waveguide length 
these simulations. 

of 100 cm and radius, 1.9 cm in 

The principal conclusion from our linear ana- 
lysis is that variation of beam energy, y, in time 
will lead to corresponding changes in a long cyclo- 
tron wavetrain. Successful utilization for collec- 
tive ion acceleration also requires that the wave 
phase changes occur approximately according to a 
predetermined formula and that no disruptive non- 
linearities manifest themselves. Simulation results 
have verified boih these characteristics. Figure 1, 
for instance, shows energy phase space plots of the 
beam (y - 1 vs. z) at two different times, wpt = 280 

and 420. Injected beam energy has increased from 

‘b = 3.84 to 4.24 MeV in ime of 2.5 ns . During this 

period, the wave phases have been shifted different- 
ially from about l/4 initial wavelengths near the 
anode to almost 2 wavelengths near the exit plane. 
In Fig. 2 we directly compare the field measured at a 
fixed “probe” to that predicted by Eq. (2). We need 
an effective value of k. 5 RO/yOvz to evaluate (2), 

and this was found from two-dimensional linear theory. 
We emphasize here the importance of self-consistent 
linear theory, since the wavenumber, k 0’ corresponds 

to an effective y. greater than any value of y 

actually g the beam. There is still a small phase 
discrepancy between simulation and simple theory, but 
the extreme sensitivity of phase to equilibrium con- 
ditions, such as kg, leads us to believe that Eq. (2) 

is very satisfactory. 

An axial profile of the Ez field is shown in 

Fig. 3. The importance of using space-charge domi- 
nated beams can be seen by noting the magnitude of 
field on the anode surface. This field may induce 
breakdown on the anode surface, but it is needed to 
produce the large amplitude cyclotron waves. The 

wave field here is roughly Ez u 1.5-2.0 x lo5 V/cm. 

Furthermore, virtually no cyclotron wave attenuation 
is observed in these simulations after the first 
wavelength. V 

r 

Ar = i -----T (w - 
(8) 
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III. Conclusions 
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Fig. 1 

Energy phase space plots showing w = 0 cyclotron 

modulation; 
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(b) LUPt = 420. 
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Fig. 2 

Comparison of Eq. (2) (solid line) with Ez “probe” 

signal at z = 144, same parameters as Fig. 1. 
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Fig. 3 

Spatial distribution of E- field for w = 0 cyclotron 
SC 

wave, same parameters as Fig. 1. For no = 10 12 cm-3 , 

peak wave field Ez ? 2 x lo5 V/cm. 

Excitation and acceleration of a suitable 
cyclotron wave has, we believe, been successfully 
demonstrated in our numerical simulations. our 
confidence is further strengthened by preliminary 
experimental results which also show w = 0 phase 
acceleration in time-varying relativistic electron 

beams. 10 The half of this problem, loading ions 
into the wave and accelerating them, is being pur- 
sued with test particle and full simulation calcula- 
tions. Those results will be presented in a later 
article. 
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